
Building Systems out of Available Components:
Quality and Adaptation Considerations

Tony Gillan (B.InfTech)

6190CIT: Honours Research Project
School of Computing and Information Technology

Griffith University
Nathan, Queensland, 4111, Australia

tony.gillan@student.gu.edu.au
tony@gridloq.com

Submitted in partial fulfillment of the requirements of the degree of:
Bachelor of Information Technology with Honours

November 10, 2002

Abstract

Functional requirements are generally easy to specify, analyse, implement, and

verify, compared to quality attributes. There is a well-defined process for taking

these requirements through to a finished software product.

Quality attributes, however, have been neglected in many standard software

engineering processes. This is primarily because they are hard to quantify, hard to

keep track of, and tend to refer to the behaviour of the system as a whole rather

than individual functionality.

Component-based engineering requires a system integrator to choose function-

ality from a number of available components, and meld them together to produce

to a complete system. The integrator cannot know what quality attributes are built

into each component unless that information is provided by the component devel-

oper. Hence the integrator cannot specify in detail and with confidence the quality

attributes required in specific components.

By using Behavior TreeTM architecture descriptions, a direct translation and

integration of functional requirements can be made consistently and completely.

The architecture can then be analysed for, and adapted to meet, individual quality

requirements.

An architecture description, in its XML form, can be provided along with the

actual component implementation, allowing a software integrator to determine if a

black-box component implements functional and quality requirements.

1

0.1 Statement of Originality

The material in this dissertation has not been previously submitted for a degree or

diploma in any university, and to the best of my knowledge contains no material

previously published or written by another person except where due acknowledge-

ment is made in the thesis itself.

Tony Gillan

2

0.2 Acknowledgements

I would like to thank my supervisors; Senior Lecturer Terry Rout and Professor

Geoff Dromey, for their guidance, encouragement, and critical perspectives on this

topic. My fellow academics within the Software Quality Institute are also to be

thanked for their support.

Contents

0.1 Statement of Originality . 1

0.2 Acknowledgements. 2

1 Introduction 12

2 Topic Introduction 15

2.1 Software Requirements. 16

2.2 Software Architecture. 18

3 Problem Statement 19

3.1 The Problem. 19

3.2 Justification. 20

3.3 Discussion. 21

4 The State of the Art 24

4.1 Software Requirements. 25

4.1.1 Functional and Nonfunctional Requirements. 25

4.1.2 Software Quality. 25

4.1.3 A Model for Software Product Quality. 27

4.2 Software Quality Attributes. 31

4.2.1 Software Engineering Templates. 31

4.2.2 Quality Attributes. 33

4.2.3 Software Quality Attributes. 35

3

CONTENTS 4

4.2.4 Understanding Quality Attributes. 42

4.2.5 Software Product Quality Requirements and Evaluation. 43

4.2.6 Defining and Specifying Quality Attributes. 45

4.2.7 Quality Attributes and Software Architecture. 48

4.3 Software Engineering Measurement. 51

4.4 Software Process Quality. 52

4.5 Software Component Architecture. 54

4.5.1 Models of Evolving Software. 54

4.5.2 Component-Based Systems. 54

4.5.3 Architecture and Legacy Systems. 56

4.5.4 Achieving an Architecture. 57

4.5.5 Architectural Means for Achieving Qualities. 57

4.5.6 Types of Application Integration. 58

4.5.7 Design and Use of Software Architectures. 62

4.6 Architecture Description. 69

4.6.1 Genetic Software Engineering. 69

4.6.2 Model Driven Architecture. 69

4.7 Component Certification and Selection. 75

4.7.1 Standards and Product Certification. 75

4.7.2 COTS Myths . 76

4.7.3 COTS Requirements. 77

4.7.4 Quality Attribute Evaluation. 80

4.7.5 COTS Assessment. 81

4.7.6 Component Evaluation. 84

5 Problem Solution 85

5.1 Quality Attributes Model. 88

5.1.1 The Software Development Process. 88

5.1.2 Software Requirements Categorisation. 91

5.1.3 Quality Attribute Specification. 95

CONTENTS 5

5.2 Component Development. 103

5.3 Component Development Example. 107

5.3.1 Stack .109

5.3.2 Queue. .121

5.3.3 Set .127

5.3.4 Set with Concurrency. 128

5.3.5 Collection. 133

5.4 Component Adaptation Example. 136

5.4.1 Hospital Bed Allocation System. 139

5.4.2 Carpark Space Allocation System. 147

5.4.3 Translation Results. 155

5.4.4 Component Adaptation. 158

5.4.5 Quality Identification. 164

6 Conclusions 169

6.1 Conclusions. .169

6.2 Summary of Contributions. 172

6.3 Future Research. 173

7 Glossary of Terms 175

8 Acronyms 177

A Behavior Tree Architecture Description 188

A.1 Behavior Tree Notation - Graphical Form. 190

A.2 Behavior Tree Notation - Textual Form. 195

A.3 XML Schema Specification for Behavior Trees. 197

A.4 Example XML Behavior Tree 213

B Quality Attribute Specification 215

B.1 XML Schema for Quality Attribute Specification. 216

CONTENTS 6

B.2 Example XML Quality Attribute Specification. 219

C Component Implementation Example using Java 221

List of Figures

4.1 Quality in the software life-cycle. 44

4.2 Model for internal and external quality. 44

4.3 Model for quality in use. 45

4.4 Matrix of Interactions - ISO 9126 Quality Characteristics. 48

4.5 Relationship between ISO 9126 Quality Characteristics and Engi-

neering Attributes of Software. 49

4.6 The presentation integration model integrates through the user in-

terface of applications.. 59

4.7 The data integration model integrates directly to the data created

and managed by the application.. 60

4.8 The functional integration model integrates directly with the code

of the application.. 61

4.9 Context of Architectural Design within the Software Development

Process . 68

4.10 MDA showing the pervasive services and specialised computing

environments . 71

4.11 Department Relationship Objects using UML. 73

5.1 Software Development Activities. 89

5.2 Categories of Software Requirements. 92

5.3 Quality in the software life-cycle. 93

5.4 Model for internal and external quality. 94

7

LIST OF FIGURES 8

5.5 Model for quality in use. 94

5.6 COTS System Integration Life-cycle. 103

5.7 COTS Component Qualification Phase. 103

5.8 COTS Component Architecture Development. 104

5.9 COTS Component Augmentation. 104

5.10 Updated COTS Life-cycle. 105

5.11 XML Specification of Requirements and Architecture. 106

5.12 Component Specification and Composition. 107

5.13 Basic Stack Behaviour. 111

5.14 Initialisation Part of Stack . 112

5.15 Producer Process for Stack. 112

5.16 Consumer Process for Stack. 113

5.17 Stack Behaviour with External Operator Control Augmentation. . 114

5.18 Updated Initialisation Part of Stack. 115

5.19 Additional Operator Control Process for Stack. 116

5.20 Alterations to Producer Process. 117

5.21 Stack Behaviour with Concurrency Augmentation. 118

5.22 Updated Operator Control Process for Concurrency. 119

5.23 Updated Producer Process with Threads and Critical Regions. . . 120

5.24 Basic Queue Behaviour. 124

5.25 Queue Behaviour with External Operator Control Augmentation. 125

5.26 Queue Behaviour with Concurrency Augmentation. 126

5.27 Basic Set Behaviour. 130

5.28 Set Behaviour with External Operator Control Augmentation. . . 131

5.29 Set Behaviour with Concurrency Augmentation. 132

5.30 Modification of Addition Process to allow for Different Collection

Types .133

5.31 Modification of Retrieval Process to allow for Different Collection

Types .134

LIST OF FIGURES 9

5.32 Analogous Behaviour. 137

5.33 Component Architecture Re-Engineering. 138

5.34 Hospital Bed Allocation Behaviour derived from the original re-

quirements. .140

5.35 Hospital Bed Allocation Initiation Process. 141

5.36 Hospital Bed Allocation Admission Process. 141

5.37 Hospital Bed Allocation Departure Process. 142

5.38 Hospital Bed Allocation Behaviour derived from the Carpark Al-

location System requirements. 143

5.39 Hospital Bed Allocation Initiation Process. 144

5.40 Hospital Bed Allocation Admission Process. 145

5.41 Hospital Bed Allocation Departure Process. 146

5.42 Car Space Allocation Behaviour derived from the original require-

ments .148

5.43 Car Space Allocation Initiation Process. 149

5.44 Car Space Allocation Entry Process. 150

5.45 Car Space Allocation Exit Process. 151

5.46 Car Space Allocation Behaviour derived from the Hospital Bed

Allocation System requirements. 152

5.47 Car Space Allocation Initiation Process. 153

5.48 Car Space Allocation Exit Process. 153

5.49 Car Space Allocation Entry Process. 154

5.50 Hospital Bed Allocation Behaviour derived from the Set Collection

requirements .159

5.51 Hospital Bed Allocation Initiation Process. 160

5.52 Hospital Bed Allocation Admission Process. 160

5.53 Hospital Bed Allocation Departure Process. 161

5.54 Hospital Bed Allocation Behaviour derived from the Set Collection

requirements .162

LIST OF FIGURES 10

5.55 Hospital Bed Allocation Admission Process Alterations. 163

5.56 Hospital Bed Allocation Departure Process Alterations. 163

A.1 Graphical Behavior Tree Notation - Part 1. 191

A.2 Graphical Behavior Tree Notation - Part 2. 192

A.3 Graphical Behavior Tree Notation - Part 3. 193

A.4 Graphical Behavior Tree Notation - Part 4. 194

List of Tables

4.1 Quality Measurement Model. 46

4.2 Certification Scope. 78

4.3 Concrete Documentation According to UL 1998, Sections 3.1-3.478

5.1 Component and Component-State names and their Equivalents used

for the Example Architecture Translations. 157

11

Chapter 1

Introduction

This dissertation focuses on aspects of adaptation, and reuse of existing software

components. A software component is generally a stand-alone software product

with specified interfaces and quality attributes, designed to be integrated into an

overall system. At one stage, it has undergone the software development process

including requirements, design, implementation, testing, and packaging. The ma-

jor issue for re-using this existing software is how to integrate it and other compo-

nents into in a new system. A developer must take into account efficiency, perfor-

mance, reliability, and safety of the overall system. These are quality attributes.

A detailed, complete set of functional requirements will enable a software de-

velopment team to create a quality product. However this system can still fail to

deliver the user’s unstated useability, availability, and performance expectations.

The requirements elicitation process generally focuses on deriving the local be-

haviour of different parts of the system. Quality attributes focus on how well the

system performs.

Over the last few decades, a number of researchers and practitioners have ex-

amined how systems achieve quality attributes. It seems that no one has systemat-

ically and completely documented the relationship between software architecture

and quality attributes. Yet there is a widely held premise that architecture deter-

mines quality attributes, and very little needs to be known about the functionality

12

CHAPTER 1. INTRODUCTION 13

of the system in order to analyse the system’s quality attributes.

An architectural design is normally derived from a set of requirements as a part

of the software development process. It also is the least structured of all processes.

Most of this work is left up to the skill, experience, and intuition of the designer,

rather than a formalised methodology. This is an obvious process where the quality

of the system can suffer.

A part of the problem is that generally a complete set of functional require-

ments is available for what a component does, but there is only vague information

about how the component performs overall, and how it will behave as a part of a

new system with different requirements and a different environment.

The software architecture description using Behavior Trees is the first high-

level design incorporating the decisions and trade-offs made during the software

development process. Decisions made at these early stages have far-reaching con-

sequences, in terms of cost, and quality. Fixing an error found during the require-

ments phase costs much less than fixing the same error found during testing.

As a result of the identification of the dependent relationship between quality

requirements and architecture, and the lack of formalised processes between these

domains, these areas will become the focus of this dissertation.

A combination of current requirements, quality standards, and industry best

practice will be used to derive a model for the specification of quality attributes.

To provide a direct association between functional requirements and an architec-

tural description, the Genetic Software Engineering approach will be used. This

approach provides a clear methodology for specifying behaviour for individual re-

quirements, and then composes them into the behaviour for the overall system.

This allows for the implementation-independent validation of the requirements.

The resulting Behavior Tree descriptions will be used as the basis of comparing

similar architectures, identifying quality attributes, encapsulating, and transform-

ing an existing architecture to meet changing quality attribute needs.

Overall the results of this dissertation will show that most quality attributes

CHAPTER 1. INTRODUCTION 14

can be identified and changed within the software architecture. As the software

architecture design is independent of the implementation, but still embodies all of

the functional and non-functional requirements, it is information that should be

included along with the software component. This can allow detailed investiga-

tion and validation by the integrator, as a part of the component-based software

development process.

Chapter 2

Topic Introduction

This chapter provides a brief overview to the domains of software architecture

and requirements. In terms of the software development process, an initial set

of customer business needs are translated into detailed software functional and

quality requirements. These requirements are then used to create an architectural

description for the proposed implementation of the system.

By limiting the scope of this dissertation to these high-level domains, the trans-

formation of these requirements through to an architecture can be traced and anal-

ysed, and propriety implementation issues can be avoided.

15

CHAPTER 2. TOPIC INTRODUCTION 16

2.1 Software Requirements

“The path to quality software begins with excellent requirements.” [59, Wiegers(1996)]

Not handling the process of requirements development and management is one the

most common causes of software project problems.

Requirements have different, valid definitions, depending on your role in the

product development process. Customer-provided requirements are really solution

ideas, like a high-level product concept or business vision. Developer require-

ments are often detailed user-interface designs. End-users may provide their re-

quirements, but these may not be detailed or complete enough for the developer

to actually implement that functionality. Then there are issues with ambiguous or

conflicting requirements, and quality expectations.

Requirements, as specified in a Software Requirements Specification, are gen-

erally categorised into two areas; functional and non-functional requirements. Func-

tional requirements describe the basic “concrete” behaviour of individual elements

of the system. Non-functional requirements, including quality attributes tend to

describe the overall high-level behaviour of the system in terms of safety, security,

performance, availability, portability, etc.

For example, in terms of availability, if a client has commissioned an online

banking system, they require a certain level of availability; customers will get irate

if the system is unavailable from 12pm to 6pm on Friday due to maintenance.

Customers want to know that their money, and hence the system, is secure from

external and internal violation.

These requirements differ from the specific functionality of the system such as

balance checking, money transfer, address updates, and payments that a banking

system exhibits. Some of these features can be added on to existing systems, and

not effect the existing functionality.

Unfortunately, non-functional requirements, such as “safety” or “security” can-

not be added separately to the system once developed. Every code module devel-

oped and integrated must take security into account, as it is being written and tested.

CHAPTER 2. TOPIC INTRODUCTION 17

The overall security of the system is directly related to the most security-vulnerable

part of that system – “the weakest link in a chain”.

Non-functional requirements may not necessarily be localised to one part of the

architecture or code, as functional requirements can be. They relate to the overall

behaviour of the system.

Overall both functional and non-functional requirements are as important as

each other, although handled differently. The system will be developed entirely

from them. Hence the success of the software is intrinsically related to how well

they are interpreted and implemented.

Sections4.1 and4.2 will describe the current practices and standards within

the software industry for categorising and using functional and non-functional re-

quirements within the development lifecycle.

CHAPTER 2. TOPIC INTRODUCTION 18

2.2 Software Architecture

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally visi-

ble properties of those components and the relationships among them.[7, Basset

al.(1998)]

A software architecture is widely recognised as the first key artifact of software

engineering. A systems software architecture is the key to communicating and

comprehending that system. [4, Bachmannet al.(2002)]

From [12, Bosch(2000)]; although software systems have had architectures

since the early days of computers, the importance of explicit specification, anal-

ysis, and design of architectures has only recently been recognised. Traditional

best practice dictated that engineers just add quality to their system as they were

implementing the code.

Transforming the original functional and quality requirements into an archi-

tecture is the most complex, and least supported activity of the application devel-

opment process. Detailed design and implementation are better understood, more

methodical, and have more technological support available to the software engi-

neer.

An explicit software architecture description allow quality attributes to be de-

signed and assessed, and trade-offs made. This allows an early evaluation of the

requirements for the proposed system between the developer and the client.

Extensive work is currently in progress at the Software Engineering Insti-

tute developing methods for analysing and designing software architectures, tak-

ing quality attributes into consideration. These methods include the Architec-

ture Tradeoff Analysis Method SM (ATAM SM), the Quality Attribute Workshop

(QAW), and the Attribute-Driven Design (ADD) method. While these methods ef-

ficiently manage the use of quality-attribute knowledge, they don’t formalise that

knowledge. To properly use those methods, analysts and designers must be armed

with quality-attribute knowledge and experience. [4, Bachmannet al.(2002)]

Chapter 3

Problem Statement

In continuation from the topic overview presented in Section2, this section defines

and discusses the problem that the dissertation undertakes to address.

3.1 The Problem

Given a statement of quality requirements for a system, how can these be allocated

and defined for the identified components?

Assuming that an existing software component meets it’s functional require-

ment specifications, the following breakdown of the problem has been made:

1. How to define, specify, and measure quality attributes within software com-

ponents?

2. How do quality attributes of individual software components affect the qual-

ity of the overall integrated system?

3. How to adapt an existing software component for use within a new system

with different quality attributes?

These specific issues will be addressed in Section5 and results summarised in

Section6.1

19

CHAPTER 3. PROBLEM STATEMENT 20

3.2 Justification

This section will justify why the problem has not been fully answered as yet.

Using existing software components within new software projects is becoming

essential for a developer to meet minimum functionality and time-to-market re-

quirements of the marketplace. The primary issue for the reuse of software is how

to evaluate, select, and integrate compatible components. “Although it has been

clear for some time that integration is a key to software reuse, little has been done

to quantify the integrability of components” [34, Seacordet al.(2000)]

The probable reason for this is explained by [12, Bosch(2000), Chapter 1, p6].

A “naive approach to software reuse, takes components, plugs them together, like

Lego blocks, and produces a useful system. This may be a simple concept, but

does not work in practice for real complex systems.”

A planned approach is recommended which requires that the organisation de-

velop reusable assets with the right abstraction and variability levels for the soft-

ware product devised and evolved. Assets should be developed with predefined

interfaces, as parts fitting into a higher-level structure, rather than suitable compo-

nents being searched for from a collection of developed and mined assets. This

seems at odds with current industry practice.

The high-level architectural description of the component, is the best place

work with its quality requirements and functionality. From [9, Bergeyet al.(2002)],

the software architecture description is the first high-level design incorporating the

decisions and trade-offs made during the software development process. Decisions

made at these early stages have far-reaching consequences, in terms of cost, and

quality.

To fix an error during requirements or early design phases costs order of mag-

nitudes less than fixing the same error found during testing. [10, Boehm(1981)].

The importance of the architecture within the software development process

has been explained, but this doesn’t automatically mean clear and consistent method-

ologies are available now. From [12, Bosch(2000)], although software systems

CHAPTER 3. PROBLEM STATEMENT 21

have had architectures since the early days of computers, the importance of ex-

plicit specification, analysis, and design of architectures has only recently been

recognised.

It is important to any software industry project that not just the functional re-

quirements are defined within the architecture. Traditionally, quality requirements

are left up to the programmer to implement as part of their development process.

Quality requirements relate more to the overall behaviour of the system, rather than

individual parts or functionality. Hence they tend to be hard to identify, and directly

implement.

Problems of linking the relationship between quality attributes and architecture

descriptions stem from the lack of independent, precise definitions, patterns, and

analysis techniques for all attributes. [8, Basset al.(2000)] Availability is an at-

tribute, but it is also a sub-characteristic of security (denial of service attacks can

limit availability). Hundreds of patterns at different levels of granularity, do not

lend themselves to analysis, categorisation or reuse.

“Achieving an architecture in a reliable, repeatable manner from a precise state-

ment of the quality requirements is a key open research area.” [7, Basset al.(1998)

Chapter 19.3]

3.3 Discussion

This section undertakes to describe why it is worthwhile for the problem to be

answered.

There are number of issues within the software industry today, including;

• the high cost of maintenance,

• the lack of software reliability or high cost to achieve reliability, and

• the failure to deliver products on-time and within-budget.

CHAPTER 3. PROBLEM STATEMENT 22

[12, Bosch(2000), Chapter 1, pp4-6] Any work that addresses these issues

will provide direct benefits to the industry as a whole. Reuse of existing soft-

ware through componentisation [31, McIlroy(1969)] has long been recognised as

the most promising approach to deal with these issues. “If we are able to develop

systems from existing components, development cost decreases, quality increases

because the components have been tested in other contexts, time-to-market is short-

ened and maintenance cost is decreased because changes to the components benefit

multiple systems.” [12, Bosch(2000), Chapter 1, p6]

[9, Bergeyet al.(2002)] states that decisions made at the early stages of soft-

ware development have far-reaching consequences, in terms of cost, and quality.

Time should be spent dealing with functionality and quality requirements issues at

the software architecture level, rather than at the costly implementation phase.

There are several benefits to fully defining the relationship between quality

attributes and architecture:

1. A standard methodology for implementing functional and quality require-

ments within the software architecture can be defined and refined. This will

allow third-party analysis of the component’s behaviour without having to

deal with binary code.

2. A standard approach for identifying and specifying quality attributes within

software components can be developed. This will allow third-party testing

and certification of black-box components to be made.

3. Techniques for reconfiguring or transforming an architecture to provide spec-

ified levels of quality attributes, can be developed, allowing reuse of existing

components within new application areas.

A component integrator needs to now how a component will affect their sys-

tem, and whether it will do what it is supposed to. Just supplying the interface

specification, with now quality attribute details, is inadequate. This is why most

CHAPTER 3. PROBLEM STATEMENT 23

reuse is currently limited to component assets internal to the organisation. Integra-

tors at least have access to source code, and possibly the development team who

created it.

Overall, by spending more time dealing directly with the issues of quality at-

tributes and software architecture development, reuse of existing software compo-

nents by third-party organisations will become more of a reality.

Chapter 4

The State of the Art

In this section a detailed research summary will be given in the seven main areas

of:

• Section4.1Software Requirements

• Section4.2Software Quality Attributes

• Section4.3Software Engineering Measurement

• Section4.4Process Quality Evaluation

• Section4.5Software Component Architecture

• Section4.6Architecture Description

• Section4.7Component Certification and Selection

This summary is intended to present the main findings, issues, and current best

practice for quality attribute specification and component-based software engineer-

ing.

24

CHAPTER 4. THE STATE OF THE ART 25

4.1 Software Requirements

4.1.1 Functional and Nonfunctional Requirements

The set of all software requirements can be broken down into functional, and its

(supposed) antonym; non-functional requirements. [7, Basset al.(1998), ch4,

pp76-77] states that functional requirements usually define the behaviour of the

system, or the work it is supposed to produce. All other qualities of the system

such as performance and maintainability are designated in the non-functional cat-

egory.

[7, Basset al.(1998)] go further to state that all requirements cannot be cleanly

separated into these two categories. All qualities are inescapably bound up in the

behaviour of the system. For example, with security, a valid password where ex-

pected by the system, allows transition to a state where a set of privileged com-

mands is allowed. Performance dictates that the system will produce a valid re-

sponse to a command within a set time-frame. Fault tolerance allows system tran-

sition to a degraded state for remedial action, when a resource has disappeared.

As such, non-functional requirements cannot be built into the system after the

functional requirements have been implemented. They should be an integral part

of developing the behaviour of the system.

4.1.2 Software Quality

[56, Voas(1999)] addresses why the research community and software industry has

abandoned the search for revolutionary advances in building and assuring software

quality. The paper lists the eight major milestones in software quality and the

myths associated with each.

1. Process Improvement/Maturity – assumes that if a software development or-

ganisation receives a high rating, the software produced by that organisation

is as good as that organisation. i. e. organisational process maturity is equiv-

alent to software product quality.This is the opinion of [56, Voas(1999)]

CHAPTER 4. THE STATE OF THE ART 26

only, and is an inaccurate representation of the Process Maturity movement’s

claims.

2. Formal Methods – formal methods are the “process improvement” answer to

any and all security, reliability, and safety problems, by removing ambigu-

ities, inconsistencies, and logically incorrect behaviour. Unfortunately they

are hard to implement, expensive, and not foolproof.

3. Languages and OOD – using the current language or design paradigm will

solve the problems that older languages could not. This creates complexity

with information hiding, threads, inheritance, etc., and makes the software

more complex, harder to test, and difficult to produce quality systems.

4. Metrics and Measurement – numerical information about the development

process and code will reveal whether the code will do what it was intended

to do, not how it does it – semantics. Code metrics are better at assessing

the quality of the development process rather than the quality of the code.

Metrics are an indirect way of quantifying qualities such as testability and

maintainability. i. e. programs with one line of code are more maintainable

than million line programs. Metrics are guides only; they are not absolute

recipes for quality.

5. Software Standards – following a standard does not give you justification to

throw common-sense out the window.

6. Testing – the testing phase of the software development life-cycle is too late

to solve functionality and quality issues.

7. Computer Aided Software Engineering (CASE) – assumes that by using pic-

torial building blocks, more reliable code can be generated. This is still di-

rectly reliant on whether the coder is using the right pictures; garbage in –

garbage out.

CHAPTER 4. THE STATE OF THE ART 27

8. Total Quality Management (TQM) – assumes that if you use quality in all

aspects of your business, that quality will automatically permeate into your

product. This works for manufacturing, but does not apply so well to the

inventive process of software development.

4.1.3 A Model for Software Product Quality

[22, Dromey(1995)] identifies the work that has been done in producing a standard

model for software quality; from [11, Boehmet al.(1978)] and [18, Deutsch and

Willis(1988)] to the [35, ISO9126(1991)] standard. Two key points are made about

failures in current quality models are:

1. There is inadequate coverage of the product characteristics side of software

quality.

2. No direct links are made between quality attributes and the corresponding

product characteristics.

The model proposed in [22, Dromey(1995)] is applied specifically at the soft-

ware product level, but is also able to be applied at the requirements level. The

following requirements are given for quality models in general. They must:

• make clear and direct links between high-level quality attributes and explicit

product characteristics at all levels.

• provide a systematic guide for building quality into software.

• provide a way to systematically identify and classify software characteristics

and quality defects.

• define a structure that is refinable, adaptable, and understandable at all levels.

[22, Dromey(1995)] reviews the current methodology of defining a quality

model, such as taken by [35, ISO9126(1991)], to break down each quality attribute

CHAPTER 4. THE STATE OF THE ART 28

into sub-characteristics. They help to further refine the definition of quality, but

unfortunately are still vague and have little applicability at the actual product im-

plementation phase. It suggests applying the quality attributes directly to the low-

level components of the product, for simplicity and directness, and then building

up an overall sense of quality from the qualities of individual components.

The quality model entity sets defined by [22, Dromey(1995)] are:

1. components

2. quality-carrying properties of components

• correctness properties (minimal generic requirements for correctness)

C1. Computable – result obeys laws of arithmetic etc.

C2. Complete – all elements of structural form satisfied

C3. Assigned – variable given value before use

C4. Precise – adequate accuracy preserved in computations

C5. Initialised – assignments to loop variables, establish invariant

C6. Progressive – each branch/iteration decreases variant function

C7. Variant – loop guard derivable from variant function

C8. Consistent – no improper use of side-effects

• structural properties (low-level, intra-module design issues)

S1. Structured – single entry and single exit

S2. Resolved – data and control structures matching

S3. Homogeneous – only conjunctive invariants for loops

S4. Effective – no computational redundancy

S5. Non-redundant – no logical redundancy

S6. Direct – problem-specific representation

S7. Adjustable – parameterised

S8. Range-independent – applies to variables (arrays), types, loops

CHAPTER 4. THE STATE OF THE ART 29

S9. Utilised – to handle representational redundancy

• modularity properties (high-level, intermodule design issues)

M1. Parameterised – all inputs accessed via a parameter list

M2. Loosely coupled – data couples

M3. Encapsulated – uses no global variables

M4. Cohesive – the relationships between the elements of an entity are

maximised

M5. Generic – is independent of the type of its inputs and outputs

M6. Abstract – sufficiently abstract – is no apparent higher level form

• descriptive properties (various forms of specification and documenta-

tion)

D1. Specified – preconditions and post-conditions provided

D2. Documented – comments associated with all blocks

D3. Self-descriptive – identifiers have meaningful names

3. high-level quality attributes

[22, Dromey(1995)] describes the application of the constructive theory: If

each of the quality-carrying properties associated with a particular structural form

is satisfied when that particular structural form is used in a program, then that

structural form will contribute no quality defect to the software.

This theory produces two consequences:

1. Building Quality into Software: The task of building quality into software is

reduced to systematically ensuring that all the quality-carrying properties as-

sociate with each structural form used, and these in turn satisfy all structural

applications.

2. Systematic Detection/Classification of Defects: Detecting quality defects in

software is reduced to systematically checking whether, for each structural

CHAPTER 4. THE STATE OF THE ART 30

form, in all of its occurrences, that any of its quality-carrying properties that

imply high-level quality attributes are violated.

CHAPTER 4. THE STATE OF THE ART 31

4.2 Software Quality Attributes

This section reviews some of the key work produced with definition of quality

attributes. [26, Gilb(1988), ch19] is one of the first texts to define quality attributes.

4.2.1 Software Engineering Templates

[26, Gilb(1988), ch19] is the primary foundation reference for quality attribute

specification referred to most modern texts in this field. The templates give an

initial, but not complete, set of frequently used quality attribute definitions and

relationships.

An example of an attribute specification format table follows:

Maintainability:

scale = minutes to do simplest repair to software using templates

date (initial delivery to customers) = January next year

test (unit) = at least ten consecutive repair attempts to be done within worst

case level for each module

test (system) = at least 50 random, representative system level bugs to be

inserted and then repaired within planned level requirement

worst (by initial release date) = 10 minutes

plan (by initial release date) = 5 minutes

plan (by 3 years after initial release date, for online modules only) = 2

record (lab experiment TR23.3 1989) = 10 seconds average

now (old system, last year average) = 30 minutes

see (marketing strategy, Part 2.3.12) = input to this requirement

source (marketing requirement) = MRS Jan 28th 198x, JCP

The following is the breakdown of template attributes proposed by [26, Gilb(1988)].

CHAPTER 4. THE STATE OF THE ART 32

Qualities of Attributes

Workability - raw ability of the system to perform work

• Process Capacity - ability to process units of work in units of time

• Responsiveness - reaction to a single event

• Storage Capacity - capacity of a part of a system to store units of

a defined thing

• other work-capacity measures

Availability - how much a system is usefully available to perform the work

which it was designed to do

• Reliability - measure of the degree to which the system does what

it is intended to do, as opposed to something else

• Maintainability - how quickly an unreliable system can be brought

to a reliable state

• Integrity - trustworthiness of the system to be in the right state,

with security intact

Adaptability - system’s ability to change

• Improvability - efficiency of making minor adaptations, changes

and improvements to the system

• Extendability - the ease of adding new factors to an existing sys-

tem

• Portability - the ease of moving a system from one environment to

another

Usability - how well people are going to be able and be motivated to use the

system practically

• Entry Requirement - human requirements for success in learning

and handling the system

• Learning Requirement - resources, principally time, needed to at-

tain some measurable level of ability in the system

CHAPTER 4. THE STATE OF THE ART 33

• Handling Ability - net productivity over time, when error time is

deducted

• Likability - how well people like to use the system

Resource Attributes - costs of existence (development, use and maintenance) of

a system,

Time - calendar time to build a system, and working days needed to accom-

plish a task

People - all people-related resources such as “work years” to construct a

system, and people needed to staff or operate it.

Money - all types of monetary costs of building and maintaining the system

Tools - all physical resources which can somehow be limited, and can be

critical to our success.

Other Resources - measurable resources such as marketing, goodwill, rep-

utation, image, etc.

4.2.2 Quality Attributes

[7, Basset al.(1998), ch19.3] attempts to analyse and categorise all the quality at-

tributes, but finds that different qualities manifest themselves differently through-

out the software development life-cycle. Overall:

1. Many quality attributes should be analysed and designed into the system at

the architectural level.

2. Some quality attributes have no real significance at the architectural level.

Quality attributes should never be developed in isolation. Every attribute will

have a negative and/or positive effect on some other attributes. For example, a

secure system will tend to be a fault-tolerant system. Almost every attribute imple-

mented will be at the detriment of performance.

CHAPTER 4. THE STATE OF THE ART 34

The following classes of quality attributes are identified by [7, Basset al.(1998)]

with respect to architecture:

1. Discernable while the system executes:

performance – inter-component communication to exploit parallelism

security – specialised components such as secure kernels or authentication

servers

availability – fault tolerance with redundant components; controlling com-

ponent interaction

functionality – NOT architectural but will interact with other quality at-

tributes

usability – achieving proper information flow; efficiency related to perfor-

mance; modifiability helps to achieve

2. Not discernable at runtime:

modifiability – modularised, encapsulating components

portability – portability layer

reusability – loose coupling between components

integrability – consistent component interfaces; uses relation

testability – modularised, encapsulating components; uses relation

3. Business qualities affected by the architecture:

time to market – pressure to use COTS

cost – ability to use assets from in-house

projected lifetime of the system – modifiability and portability issues

targeted market – portability, functionality, as well as performance, relia-

bility, and usability on various platforms

CHAPTER 4. THE STATE OF THE ART 35

rollout schedule – flexibility and customisability if product to be released

only with base functionality

extensive use of legacy systems– careful definition of appropriate integra-

tion mechanisms

4. Qualities about the architecture itself:

conceptual integrity – underlying theme unifying the design of the system

correctness and completeness– meeting requirements and runtime con-

straints

buildability – ease of constructing a desired system on-time within given

resources

4.2.3 Software Quality Attributes

[60, Wiegers(1999), Chapter 11] describes the relationship between each of the

quality attributes in terms of their trade-offs.

1. Availability

Reliability – direct

Robustness– direct

• important primarily to users

• critical to mainframe systems

• percentage of planned uptime during which system is actually available

for use and fully operational.

• can be different for different times of the day/week

• Availability = MeanTimeToFailure
MeanTimeToFailure+MeanTimeToRepair

2. Efficiency

Flexibility – inverse

CHAPTER 4. THE STATE OF THE ART 36

Interoperability – inverse

Maintainability – inverse

Portability – inverse

Reliability – inverse

Robustness– inverse

Testability – inverse

Usability – inverse

• important primarily to users

• critical to embedded systems

• how well the system utilises processor capacity, disk space, memory,

or communication bandwidth

• important to consider minimum hardware configurations

• allow safety buffer (in memory/cpu usage) for unanticipated condi-

tions, e.g. under peak load

3. Flexibility

Efficiency – inverse

Integrity – inverse

Maintainability – direct

Portability – direct

Reliability – direct

Testability – direct

• important primarily to users

• extensibility, augmentability, extendability, expandability

• how much effort is needed to add new capabilities to the product

CHAPTER 4. THE STATE OF THE ART 37

• choose design approaches that maximises software flexibility, espe-

cially for incremental releases, new drivers, etc.

4. Integrity (security)

Efficiency – inverse

Interoperability – inverse

Reusability – inverse

Testability – inverse

Usability – inverse

• important primarily to users

• precluding unauthorised access to system functions

• preventing information loss

• protection from virus infection

• privacy protection of data entering/leaving system

• has no tolerance for error - data and access must be completely pro-

tected in specified ways

• state the user identity verification, user privilege levels, access restric-

tions, precise data, that must be protected

5. Interoperability

Efficiency – inverse

Flexibility – direct

Integrity – inverse

Portability – direct

• important primarily to users

• critical to desktop systems

CHAPTER 4. THE STATE OF THE ART 38

• how easily the product can exchange data or services with other sys-

tems

• need to specify what other applications/data users will use in conjunc-

tion with this system

6. Maintainability

Availability – direct

Efficiency – inverse

Flexibility – direct

Reliability – direct

Testability – direct

• important primarily to developers

• critical to mainframe systems

• how easy it is to correct a defect or make a change in software

• how easily the software can be understood, changed and tested

• closely related to Flexibility

• products revised periodically or built quickly require high maintain-

ability

• average time required to fix a problem, and percentage of fixes made

correctly

7. Portability

Efficiency – inverse

Flexibility – direct

Interoperability – direct

Maintainability – inverse

CHAPTER 4. THE STATE OF THE ART 39

Reusability – direct

Testability – direct

Usability – inverse

• important primarily to developers

• effort required to migrate a piece of software from one operating envi-

ronment to another

• design approaches for Portability are similar to approaches for Reusabil-

ity

• typically immaterial or critical to the projects success

• should state the portions of the product that must be able to migrate to

other environments and identify those target environments.

8. Reliability

Availability – direct

Efficiency – inverse

Flexibility – direct

Maintainability – direct

Robustness– direct

Testability – direct

Usability – direct

• important primarily to users

• critical to embedded systems

• probability of software executing without failure for a specified period

of time

• Robustness and Availability are often considered aspects of reliability

CHAPTER 4. THE STATE OF THE ART 40

• percentage of correctly performed operations

• the length of time the system runs before revealing a new defect

• defect density

• measures based on how severe the impact would be if the failure occurs

• whether cost of maximising reliability is justifiable

• software can be still considered to meet its reliability requirements even

if it still contains defects.

• systems designed for high reliability should also be designed for high

testability

9. Reusability

Efficiency – inverse

Flexibility – direct

Integrity – inverse

Interoperability – direct

Maintainability – direct

Portability – direct

Reliability – inverse

Testability – direct

• important primarily to developers

• extent to which a software component can be used in applications other

than the one for which it was initially developed.

• costs considerably more than one-off code

• code has to be modular, well-documented, application and environment

independent, and somewhat generic.

CHAPTER 4. THE STATE OF THE ART 41

• specify what elements of system are to be reusable, or what libraries

are to be generated.

10. Robustness

Availability – direct

Efficiency – inverse

Reliability – direct

Usability – direct

• important primarily to users

• degree to which a system or component continues to function correctly

when confronted with invalid input data, defects in connected software

or hardware components, or unexpected operating conditions.

• robust software recovers gracefully from problem situations and is for-

giving of user errors.

• find out what known error conditions the system might encounter and

how users would like the system to react.

11. Testability

Availability – direct

Efficiency – inverse

Flexibility – direct

Maintainability – direct

Reliability – direct

Usability – direct

• important primarily to developers

• ease with which the software components or integrated product can be

tested to find defects.

CHAPTER 4. THE STATE OF THE ART 42

• critical for product with complex algorithms and logic, or subtle func-

tionality interrelationships.

• important for code that will be modified often, because of the need for

frequent regression testing.

• e.g. Cyclomatic complexity measuring number of logic branches in a

source code module.

12. Usability

Efficiency – inverse

Robustness– direct

Testability – inverse

• important primarily to users

• critical to desktop systems

• “ease of use” and “human engineering”

• factors that constitute ”user-friendliness”

• measures effort required to prepare input for, operate, and interpret the

output of the product.

• need to balance Usability with “easy of learning” how to use the prod-

uct.

• encompasses how easy it is for new or infrequent users to learn to use

the product.

• consider how expensive it will be to test the product to determine whether

it satisfies the requirements.

4.2.4 Understanding Quality Attributes

[7, Basset al.(1998), ch19.3, pp423-424] discusses the issues with the meaning

of quality within software. There are problems with the meaning of “fitness for

CHAPTER 4. THE STATE OF THE ART 43

use” with many of the quality attributes. Developmental qualities have problems

because of a lack of suitable mature models for discussing them.

Models such as constructive cost modelling (COCOMO) or function point

modelling, only measure development time from an external point of view. They

do not have an abstract internal understanding of the development process.

An example of a well-defined model is performance. This is discussed, anal-

ysed and measured in terms of resource availability and consumption. Resource

consumption is a function of the number of resource requests. The system is mod-

elled as a collection of resources and connections between these resources.

The Software Engineering Institute is currently attempting to define abstract

models for all quality attributes. They are defining fulcrum points; “measurable

properties of a system that affect two (or more) quality attributes.”

For example, the amount of variance of arrival time in a communication pipe

will affect system performance, as well as security, and reliability. A lag in arrival

leaves the data more open to undetected alteration, as well as the possibility of

hardware failures going undetected. This variance, is a fulcrum point.

4.2.5 Software Product Quality Requirements and Evaluation

[36, SQuaRE(2002)] is a working document for the forthcoming ISO 25000 stan-

dard for software quality requirements and evaluation. It replaces the previous ISO

9126 - Software Quality Characteristics and ISO 14598 Software Product Eval-

uation standards. It defines software quality in terms of a changing viewpoint

throughout the product development life-cycle. Figures4.1, 4.2, and4.3 show

that the user’s perception of quality is mapped to the external product quality at

the requirements stage, which becomes internal product quality at the design and

development stage.

Overall, [36, SQuaRE(2002)] attempts to cover all aspects of quality, by taking

the view that no one user or developer can explicitly know all the quality attributes

required for the system, due to unstated or implied needs, changing needs, and

CHAPTER 4. THE STATE OF THE ART 44

User needs

External
quality

requirements

Internal
quality

requirements

Quality
In use

External
quality

Internal
quality

system
behaviour

Internal
metrics

Requirements
Specification

Design and
development

Operation

System integration
And testing

Real
world

software
attributes

Quality in use
metrics

External
metrics

Contribute to specifying

Contribute to specifying

indicates

indicates

use and feedback

validation

verification /validation

Figure 4.1: Quality in the software life-cycle

external and
internal
quality

functionality reliability

maturity
fault tolerance
recoverability

usability

understandability
learnability
operability

attractiveness

efficiency

time behaviour
resource
utilisation

maintainability

analysability
changeability

stability
testability

portability

adaptability
installability
co-existence
replaceability

suitability
accuracy

interoperability
security

functionality
compliance

reliability
compliance

usability
compliance

efficiency
compliance

maintainability
compliance

portability
compliance

Figure 4.2: Model for internal and external quality

CHAPTER 4. THE STATE OF THE ART 45

quality in
use

effectiveness productivity safety satisfaction

Figure 4.3: Model for quality in use

differing or unknown end-users.

[37, SQuaRE(2002)] details the use of the quality model with regards to metrics

collection. Measures are required at all three views; in use, external, and internal,

because each individual viewpoint is not sufficient or adequate to encompass the

quality measurements required for the other views.

In terms of measures, [37, SQuaRE(2002)] suggests a weighting of high, medium,

or low for each quality characteristic, so that evaluators may concentrate on qual-

ity aspects which are important to the project in hand. When the product is being

assessed, the metrics gathered can be compared against those required, and overall

feedback on the product can be provided.

4.2.6 Defining and Specifying Quality Attributes

[1, Abel and Rout(1993)] is primarily concerned with the specification of software

product quality attributes. It takes the technique presented by [18, Deutsch and

Willis(1988)] and [Mizuno and Yoji] and details a prototype tool that transforms

the quality attributes into software engineering specifications.

The original work on quality function deployment was developed in Japan in

the late 1960s by Professors Shigeru Mizuno and Yoji Akao. It emphasised the

importance of making quality control a part of business management, which even-

tually became known as TQC and TQM. The purpose of Professors Mizuno and

CHAPTER 4. THE STATE OF THE ART 46

Table 4.1: Quality Measurement Model
Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7 Activity 8

Phase requirement

analysis

architectural

design

software

detailed

design

software

cod-

ing and

testing

software

integra-

tion and

qualifi-

cation

testing

system in-

tegration

and qual-

ification

testing

software

installa-

tion

software

accep-

tance

support

9126

model

reference

required

user

quality

predicted

quality in

use

predicted

quality in

use

predicted

quality in

use

predicted

quality in

use

predicted

quality in

use

predicted

quality in

use

measured

quality in

use

required

internal

quality

predicted

external

quality

predicted

external

quality

measured

external

quality

measured

external

quality

measured

external

quality

measured

external

quality

measured

external

quality

required

external

quality

measured

internal

quality

measured

internal

quality

predicted

external

quality

predicted

external

quality

measured

internal

quality

measured

internal

quality

measured

internal

quality

measured

internal

quality

measured

internal

quality

key deliv-

erables of

activity

user and

external

quality

require-

ments

specified,

internal

quality

architecture

design of

software

or system

software

detailed

design

software

code, test

results

software

product,

test results

integrated

system,

test results

installed

system

delivered

software

product

Akao was to develop a quality assurance method that would design customer satis-

faction into a product before it was manufacturered. Prior quality control methods

were primarily aimed at fixing a problem during or after manufacturing.

The components of the [18, Deutsch and Willis(1988)] technique are as fol-

lows:

1. Step 1: Analyse the user’s need for quality:

• use standard Fitness-For-Use Factors as a checklist

CHAPTER 4. THE STATE OF THE ART 47

• collect and organise specific needs for quality

• determine required levels for each of the fifteen factors

• resolve conflicts between requirements

• establish trade-offs with cost and schedule

2. Step 2: Convert quality needs to requirements:

• use a matrix of Needs vs Requirements to establish a requirements

database

• convert each requirement into a set of relevant, testable, objective state-

ments

• review each requirement to ensure it meets standards

3. Step 3: Determine the engineering techniques or methods to be applied to

achieve each requirement:

• use a matrix of Requirements vs Techniques

4. Step 4: Document the quality requirement analysis to produce the Software

Quality Engineering Specifications.

[1, Abel and Rout(1993)] then presents a mapping between the [35, ISO 9126(1991)]

and [18, Deutsch and Willis(1988)] quality characteristics. For example [35, ISO

9126(1991)] defines the sub-characteristics of Reliability as Maturity, Fault toler-

ance, and Recoverability. Whereas [18, Deutsch and Willis(1988)] uses the overall

attributes of Reliability and Survivability to cover these same sub-characteristics.

It is found that Safety and Manageability are two characteristics that do not map

which are both outside the scope of [35, ISO 9126(1991)].

The trade-off relationships between quality attributes is shown in Figure4.4.

Figure 4.5 is the interpretation of the relationship of attributes defined by [18,

Deutsch and Willis(1988)] and reworked to conform to [35, ISO 9126(1991)], as

developed by [1, Abel and Rout(1993)].

CHAPTER 4. THE STATE OF THE ART 48

Results in these characteristics being
affected as shown

F
u
n
c
ti
o
n
a
lit

y

R
e
lia

b
ili

ty

U
s
a
b
ili

ty

E
ff
ic

ie
n
c
y

M
a
in

ta
in

a
b
ili

ty

P
o
rt

a
b
ili

ty

Increase in specified quality for these
characteristics S

u
it
a
b
ili

ty

A
c
c
u
ra

te
n
e
s
s

In
te

ro
p
e
ra

b
ili

ty

C
o
m

p
lia

n
c
e

S
e
c
u
ri
ty

M
a
tu

ri
ty

F
a
u
lt
 T

o
le

ra
n
c
e

R
e
c
o
v
e
ra

b
ili

ty

U
n
d
e
rs

ta
n
d
a
b
ili

ty

L
e
a
rn

a
b
ili

ty

O
p
e
ra

b
ili

ty

T
im

e
 B

e
h
a
v
io

u
r

R
e
s
o
u
rc

e
 B

e
h
a
v
io

u
r

A
n
a
ly

s
a
b
ili

ty

C
h
a
n
g
e
a
b
ili

ty

S
ta

b
ili

ty

T
e
s
ta

b
ili

ty

A
d
a
p
ta

b
ili

ty

In
s
ta

lla
b
ili

ty

C
o
n
fo

rm
a
n
c
e

R
e
p
la

c
e
a
b
ili

ty

Suitability + + + + +

Accurateness + + + + + +

Interoperability - - +

Compliance + - + +

Functionality

Security - + - - -

Maturity - - + +

Fault Tolerance - - + - -Reliability

Recoverability - - - -

Understandability + + + - + + +

Learnability + + + -Usability

Operability + + + + + +

Time Behaviour - - -
Efficiency

Resource Behaviour - - - -

Analysability + + + +

Changeability + - + + +

Stability + + + + +
Maintainability

Testability + + +

Adaptability - -

Installability + + -

Conformance + - + + +
Portability

Replaceability + -

Figure 4.4: Matrix of Interactions - ISO 9126 Quality Characteristics

4.2.7 Quality Attributes and Software Architecture

[8, Basset al.(2000)] focusses on linking quality attributes to software architecture.

Even though, over the last 30 years, a number of researchers and practitioners have

examined how systems achieve software quality attributes, no one has completely

and systematically linked software architecture and quality attributes.

• Lack of precise definitions: Attributes such as reliability, availability, and

performance have generally accepted definitions, but modifiability, security,

CHAPTER 4. THE STATE OF THE ART 49

Quality Characteristics

F
u
n
c
ti
o
n
a
lit

y

R
e
lia

b
ili

ty

U
s
a
b
ili

ty

E
ff
ic

ie
n
c
y

M
a
in

ta
in

a
b
ili

ty

P
o
rt

a
b
ili

ty

Engineering Attributes S
u
it
a
b
ili

ty

A
c
c
u
ra

te
n
e
s
s

In
te

ro
p
e
ra

b
ili

ty

C
o
m

p
lia

n
c
e

S
e
c
u
ri
ty

M
a
tu

ri
ty

F
a
u
lt
 T

o
le

ra
n
c
e

R
e
c
o
v
e
ra

b
ili

ty

U
n
d
e
rs

ta
n
d
a
b
ili

ty

L
e
a
rn

a
b
ili

ty

O
p
e
ra

b
ili

ty

T
im

e
 B

e
h
a
v
io

u
r

R
e
s
o
u
rc

e
 B

e
h
a
v
io

u
r

A
n
a
ly

s
a
b
ili

ty

C
h
a
n
g
e
a
b
ili

ty

S
ta

b
ili

ty

T
e
s
ta

b
ili

ty

A
d
a
p
ta

b
ili

ty

In
s
ta

lla
b
ili

ty

C
o
n
fo

rm
a
n
c
e

R
e
p
la

c
e
a
b
ili

ty

Accuracy * *

Anomaly Mangement * * *

Augmentability * *

Autonomy * * * *

Commonality * * * *

Completeness * * *

Consistency * * * * *

Distributivity * *

Quality of Documentation * * * *

Efficiency of Communication * *

Efficiency of Processing * *

Efficiency of Storage * *

Functional Scope * * *

Generality * * * *

Independence * * * * *

Modularity * * * * * * * *

Operability * * *

Safety Management *

Self-Descriptiveness * * * * * * * *

Simplicity * * * * * * *

Support * * * * *

System Accessibility *

System Compatibility * * *

Traceability * * * * * * * *

Training * * *

Virtuality * * *

Visibility * *

Figure 4.5: Relationship between ISO 9126 Quality Characteristics and Engineer-

ing Attributes of Software

and usability do not.

• Attributes cannot be isolated: Availability is an attribute, but it is also a

CHAPTER 4. THE STATE OF THE ART 50

subset of security (denial of service attacks can limit availability).

• Attribute patterns are not standard: Hundreds of patterns at different levels

of granularity, do not lend themselves to analysis, categorisation or reuse.

• Analysis techniques differ between attributes: Analysis results and interac-

tions are difficult to understand.

There is a widely held premise of the software architecture community that

architecture determines quality attributes, and very little, must be known about the

functionality of the system in order to draw quality attribute conclusions.

Performance predominantly depends of processes, their allocation to proces-

sors, communication paths between them. Reliability requires redundancy strate-

gies. In each case, architecture design decisions are necessary to achieve the at-

tribute. Very little knowledge of the functionality is required.

CHAPTER 4. THE STATE OF THE ART 51

4.3 Software Engineering Measurement

[24, Fenton and Pfleeger(1997)] looks at software quality in terms of measurement

of specific software product attributes. This may involve decomposing an attribute

into measurable components of quality, guided by published models or standards,

or by using defect-based measures.

Defects measures are not an entirely accurate measure of quality as perceived

by the user, as some defects discovered during development or testing may not lead

to software failures in operation. However, it is a powerful measure for base-lining

and monitoring quality changes.

Maintainability involves monitoring of the maintenance process, with measures

of time to locate faults and fix.

Usability must involve the people who use the software. As such, there are no

internal quality attributes that obviously predict usability.

In terms of setting measurable targets for an quality attributes, [24, Fenton and

Pfleeger(1997)] cites [26, Gilb(1988)] in saying that the onus should lie with the

user. There are recommended measures such as:

Portability = 1− ET
ER

whereET is a measure of the resources to move the system to the target envi-

ronment, andER is a measure of the resources needed to create the system for the

resident environment.

Although these measures are dependent on subjective ratings, this is better than

no rating at all. Overall, consistency is of high importance for those performing the

rating so that there is limited variability.

CHAPTER 4. THE STATE OF THE ART 52

4.4 Software Process Quality

Software process standards “that detail how to identify, analyse, design, imple-

ment, test, deploy, maintain and evolve high-quality components and component-

based applications” [30, McClure (2001)] are needed by software developers. The

successful reuse of software components cannot occur unless quality processes,

using the industry’s best practice, are put into place by the providers as well as the

integrators of these components.

A quality product must be developed using quality processes. The correla-

tion between the two has been statistically validated by [29, Lawlis et al.(1995)].

However process maturity does not automatically imply product quality. If ma-

ture technology to predict and control quality attributes is lacking, even a mature

organisation will have difficulty producing products with predictable performance

and dependability. [6, Barbacciet al.(1997)]

The remainder of this section will give an overview of the software industry’s

process standards.

The ISO 15504 international standard for Software Process Improvement and

Capability Determination (SPICE) is primarily concerned with process assessment.

It establishes a common framework for software process capability ratings, as well

as providing a migration path for existing process models such as CMM.

”The Capability Maturity Model is a widely accepted and used method for

evaluating the maturity of an organisation’s software development and maintenance

processes.” [30, McClure (2001) pg.269]. CMM is used as ade factostandard for

assessment and improving processes internal to the organisation, and evaluating a

vendor’s capability to produce quality software. Efforts are currently underway to

making CMM ISO 15504 compliant.

The defined CMM framework consists of five levels of maturity relating to the

software lifecycle:

1. Initial: The software process is mainlyad hoc, left to the discretion of the

CHAPTER 4. THE STATE OF THE ART 53

individuals performing it.

2. Repeatable: The software process includes project management processes to

track cost, schedule, and functionality. Disciplines are in place that make the

software process repeatable across multiple projects.

3. Defined: A standardised, documented software process is developed for the

organisation and is used to collect data that is used in the management and

control of both the process and its products.

4. Optimising: Continuous process improvement is achieved by using feedback

from process and product measures and by identifying, piloting, and adopt-

ing appropriate new technologies and ideas.

Organisations tend to evolve their software processes by using these maturity

levels as steps. Typically most organisations are at level 1 and 2, and few have

reached level 3 or higher.

CMM and [17, ISO/IEC 12207(1995)] are similar in many regards. They are

both requirement level specifications for processes, avoid implementation details,

and can be applied to both the software development process as well as the organ-

isational processes. However 12207 describes requirements as only the minimum

required to meet the standard, whereas CMM rates the maturity of the requirements

currently used. 12207 also describes the processes in far more detail, referencing

other standards where required, such as the Joint Review Process, Verification Pro-

cess, Management Process, etc.

CHAPTER 4. THE STATE OF THE ART 54

4.5 Software Component Architecture

4.5.1 Models of Evolving Software

[42, Sutcliffe(2002), Chapter 9.3] describes the two reuse paradigms of component

engineering and application generation architectures.

Adaption of current systems to a new task appears to be risky strategy because

of the potential cost from errors and mal-adaption. Component engineering has

lower costs but will be more suitable to technical users and large organisations.

Application generators will be suitable more to end-users.

A model is proposed for intelligent reusable components with application gen-

erator architectures that can assemble applications as required from semi-autonomous

agents. To implement this model, an addition problem arises. What minimum in-

formation is required to be distributed between agents, so that they can reliably

create harmonious components?

Finally [42, Sutcliffe(2002)] expresses the view that standardisation of the

component engineering process must be made across the industry for reuse to be-

come a viable driver in the domain marketplace. It is more likely that will be

standardisation only within specific communities of re-users, such as large corpo-

rations.

4.5.2 Component-Based Systems

[7, Basset al.(1998), Chapter 15.3] addresses the use of components within a prod-

uct production line. It is rare that a software system in today’s world is coded en-

tirely from scratch, and without the use of third-party functionality. The current

trend of “buy, don’t build” implies a loss of control and hence quality in the system

development process. [7, Basset al.(1998)] asserts that quality primarily is to be

found in the architecture, and that a developer must be careful when integrating

components into their system, that they do not compromise the quality inherit to

this architecture.

CHAPTER 4. THE STATE OF THE ART 55

[7, Basset al.(1998)] goes further to discuss the case where components are

almost compatible –meaning not compatible. They may appear to work together;

specifications match, code compiles and executes. However subtle errors with tim-

ing, operation ordering, and assumptions that no parallel processing is being done,

all can combine to produce an unreliable system. [7, Basset al.(1998)] states that

“component interfaces are notoriously poor at specifying their quality attributes:

How secure is the compiler you’re using right now? How reliable is the mail sys-

tem on your desktop?”.

A special case of interface and architectural mismatch when integrating compo-

nents, is the problem of mismatching assumptions that are embodied in separately

developed components. For example, two components may disagree about which

one calls the other, causing the system to not compile, link or execute.

There are ways of dealing with interface mismatch:

1. change requirements, and/or make bug a feature

2. avoid it by complete and careful specification of components

3. detect additional cases by careful qualification

4. repair by adaption of components

Techniques for repairing interface mismatch:

1. wrappers - encapsulate component and provide alternative interface. (e.g.

good way to introduce privacy)

2. bridges - provides translation between provides assumptions of system and

components, determined at build time.

3. mediators - actual translation determined at runtime

Techniques for avoiding interface mismatch:

1. specify as many assumptions about interface as possible (at least a subset

with the most important) from earliest phases of design.

CHAPTER 4. THE STATE OF THE ART 56

2. specify different interfaces for the same component

3. using a parameterised interface where provides and requires assumptions can

be changed before invoking the component service by changing value of a

variable. This is similar to using environment variables or parameter files.

4. a negotiated interface is a parameterised interface with self-repair logic.

Modems and routers routinely use protocols to establish mutually accept-

able communication parameters at runtime.

4.5.3 Architecture and Legacy Systems

[7, Basset al.(1998) Chapter 19.2] identifies a research area need for determining

or rediscovering the architecture of existing or legacy systems. These systems

range from well designed and documented to poorly designed and undocumented.

Often intelligent changes need to made to systems that an organisation has a large

investment in. The problems encountered are:

1. determining the existing architecture of a legacy system

2. determining the goal state of re-engineered architecture

3. developing a strategy to migrate the system to this new architecture, through

re-engineering, wrapping, or complete replacement.

Architecture to system non-conformance problems

1. there is no “documented” architecture

2. relationship between documented architecture and source code is unclear,

due to poor representation of architecture.

3. architecture out of phase with actual system, due to maintenance updates

performed only on code.

CHAPTER 4. THE STATE OF THE ART 57

4.5.4 Achieving an Architecture

[7, Basset al.(1998) Chapter 19.3] states that “Achieving an architecture in a reli-

able, repeatable manner from a precise statement of the quality requirements is a

key open research area.” Further, the problem is broken down into the following

components:

1. gathering meaningful and quantifiable definitions of the various qualities.

2. selecting or generating an architecture based on a complete set of require-

ments (functional and non-functional).

3. allowing for architecture decision trade-offs.

4.5.5 Architectural Means for Achieving Qualities

[7, Basset al.(1998) Chapter 4.2] introduces the concept of an “architectural style”

which are architectural patterns in achieving architectural aspects of software qual-

ity.

There are two types of architectural structure design points of view:

1. A system’s modular structure is most often used to derive the work-breakdown

structure, exploit supplied components, and plan for modifications. This

modular structure is only an abstraction because, once the code is compiled

and linked, those modules no longer exist.

2. Architectural styles such as pipes, filters, and client-servers do survive at

runtime, through the way components interact with each other.

The notions of an architecture as a set of modules, or as a set of processes, are

both legitimate, but they are not the same structure. They are optimised to meet

completely different criteria.

Allowing for non-execution requirements involves building the system to ac-

commodate the following changes:

CHAPTER 4. THE STATE OF THE ART 58

1. changes anticipated for this system or experienced by similar systems.

2. changes anticipated by mining the requirements specifications for areas of

uncertainty or ambiguity.

3. decreases in functionality due to production of only a system subset.

[7, Basset al.(1998)] concludes that architectures are chosen to “meet behav-

ioral and performance requirements, by exploiting familiarity with architectures of

similar systems that produced correct and timely results.”

4.5.6 Types of Application Integration

[33, Ruhet al.(2000) Chapter 2] investigates the types of application integration at

three different levels, by presenting them as models:

1. A presentation integration model, figure4.6, allows the integration of new

software through the existing presentations of the legacy software. This is

typically used to create a new user interface but may be used to integrate with

other applications. This model uses a white box approach to integration.

2. A data integration model, figure4.7, allows the integration of software through

access to the data that is created, managed, and stored by the software typi-

cally for the purposed of reusing or synchronising data across applications.

This model uses a white box approach to integration.

3. A functional integration model, figure4.8, allows the integration of software

for the purpose of invoking existing functionality from other new or existing

applications. The integration is done through interfaces to the software. This

model can use either a white or black box approach to integration. The

approaches to application of functional integration are given:

• Data consistency integration is integration through the code of an ap-

plication where the purpose is to access or update data. The integration

facilitates the communication of data and actions.

CHAPTER 4. THE STATE OF THE ART 59

Common
Presentation

Presentation Presentation

Legacy
Application

Packaged
Application

Data Data

• Web browser
• Java
• Windows GUI

Figure 4.6: The presentation integration model integrates through the user interface

of applications.

• Multi-step process integration, also known as straight-through process-

ing, is the integration of applications where there is not only communi-

cations of requests but also the coordination and management of these

requests across applications. The integration facilitates communication

of the request and manages the flow and sequencing.

• Plug-and-play components integration is the integration of applications

where a well-defined interface exists that allows a component to be eas-

ily connected with other components without modification. The inte-

gration facilitates the communication of requests and handles all of the

CHAPTER 4. THE STATE OF THE ART 60

Presentation

Application
Logic

Middleware

Data Data

Legacy
Application

Packaged
Application

• Web browser
• Java
• Windows GUI

• Batch file transfer
• Database gateway
• ODBC
• Data warehousing
• OLAP
• Data tranformation

Figure 4.7: The data integration model integrates directly to the data created and

managed by the application.

interface definition and management.

Whenever two software components have been integrated there are several fac-

tors that heavily influence the quality and utility of that integration.

• The integration model that is applied

• The tools that are used

• The designer’s choices

CHAPTER 4. THE STATE OF THE ART 61

Presentation

Application
Logic

Middleware

Data Data

Legacy
Application

Packaged
Application

• Web browser
• Java
• Windows GUI

• MOM
• DOT
• TP Monitor

Figure 4.8: The functional integration model integrates directly with the code of

the application.

The most important overall goal of integration is to reduce the level of cou-

pling, or degree of interdependency, between the software components. The white

box integration approach, as used in the presentation and data integration mod-

els, exposes the internals of the application or database to the integrator in order

to produce the required integration. This leads to a tight (high) level of coupling.

CHAPTER 4. THE STATE OF THE ART 62

The black box integration approach usually leads to loose coupling because the

details of the component are hidden, and integration is performed through an API,

connector, or some form of interface.

4.5.7 Design and Use of Software Architectures

[12, Bosch(2000), Chapter 1, pp4-6] presents a clear review of current software en-

gineering practice: Software development traditionally is a project-based activity,

focussed on meeting a delivery deadline, with little or no consideration placed on

maintenance or reusability. Typical issues in industry include:

• the cost of maintenance

• the lack of reliability, or high cost to achieve reliability

• and the failure to deliver on-time and in-budget.

Desirable objectives for the health and longevity of the industry include:

• the need to dramatically reduce the cost of development

• increase the reliability, maintainability, and resource efficiency at a reason-

able cost

• improve the time-to-market for the product

• considerably reduce maintenance costs

Component Reuse

Reuse of existing software through componentisation [31, McIlroy(1969)] has long

been recognised as the most promising approach to achieving the objectives stated

previously. “If we are able to develop systems from existing components, devel-

opment cost decreases, quality increases because the components have been tested

in other contexts, time-to-market is shortened and maintenance cost is decreased

CHAPTER 4. THE STATE OF THE ART 63

because changes to the components benefit multiple systems.” [12, Bosch(2000),

Chapter 1, p6]

Software reuse seems to have infused into the software industry through:

• operating systems

• database management systems

• compilers

• graphical user interfaces

• component interconnection standard implementations

• web servers

• web browsers

These assets may not be perceived as reuse examples, but each of these, at

one time, were developed as part of the application code, rather than developed

or sourced as separate components. They have become part of the development

infrastructure and are assumed to be present on for the intended platform.

The changing use of these assets typically follow this life-cycle:

1. functionality is part of application code

2. functionality identified and modelled as a sub-system

3. researchers develop prototype systems generalising the sub-system

4. companies commercialise the system into a product

5. product is accepted market-wide and used by software engineers

6. product incorporated into infrastructure as a library etc.

CHAPTER 4. THE STATE OF THE ART 64

[12, Bosch(2000), Chapter 1, p6] theorises that the reason software re-use has

not been successful within software development organisations is because of or-

ganisational structure, engineering culture, and lack of domain understanding. The

use of external components is well established, but reuse of software developed

within the organisation is often very hard to achieve.

The following paragraphs discusses the approaches to component integration.

The first naive approach to software reuse, takes components, plugs them to-

gether, like Lego blocks, and produces a useful system. This may be a simple

concept, but does not work in practice for real complex systems.

• The opportunistic approach assumes the software engineer selects and com-

bines pieces of software that fit the current problem and adds them to the

software product that they are working on.

• The planned approach requires that the organisation develop reusable assets

with the right abstraction and variability levels for the software product de-

vised and evolved.

• The bottom-up approach, allows software engineers to search for a suitable

component from a collection of developed and mined assets.

• The top-down approach dictates that assets are developed with predefined

interfaces, as parts fitting into a higher-level structure.

[12, Bosch(2000), Chapter 1, p6] states that any successful software reuse pro-

gramme must be planned, and it must take a top-down approach. Opportunistic

and bottom-up reuse does not work in practice.

[12, Bosch(2000), Chapter 1, p6] proposes a method for explicit software ar-

chitectural design which includes the implementation and assessment of quality

attributes. The advantages are:

• The software product built in accordance with the software architecture is

much more likely to fulfil both its quality and functional requirements.

CHAPTER 4. THE STATE OF THE ART 65

• There will be decreased implementation costs and time-to-market because

the system has been designed, reviewed, and optimised where necessary, at

the earlier architectural stage.

• An allowance is made for future changing requirements, which takes less

effort at the architectural level.

There are three levels of component reuse:

1. Subsequent versions of a software product - well established practice in the

industry

2. Different products - current challenge of reusing software in different con-

texts

3. Product versions, various products and different organisations - besides suc-

cess in domains such as graphical user interfaces, the industry is not yet

mature enough to achieve.

The academic and industry viewpoints of reusable components differ:

1. Academia

• Reusable assets are black-box components.

• Assets have a narrow interface through a single point of access.

• Assets have few and explicitly defined variation points which are con-

figured during installation.

• Assets implement standardised interfaces and can be traded on compo-

nent markets.

• Focus is on asset functionality and on the formal verification of func-

tionality.

2. Industry

CHAPTER 4. THE STATE OF THE ART 66

• Assets are large pieces of software with a complex internal structure

and no enforced encapsulation boundary (e.g. OO framework).

• The asset interface is provided through entities (e.g. classes). These

interface entities have no explicit difference to non-interface entities.

• Variation is implemented through configuration and specialisation or

replacement of entities in the asset. Sometimes multiple implementa-

tions (versions) of an asset exist to cover variation requirements.

• Assets are primarily developed internally. Externally developed assets

go through considerable (source code) adaptation to match the product-

line architectural requirements.

• Functionality and quality attributes have equal importance.

Software Architecture Design Phases

Design of a software architecture is not an independent activity. It is but one step

in the development and evolution of the software product. Figure4.9 represents

this graphically.

Phase 1 - Functionality-Based Architectural Design

1. Determine context, external interfaces, and interface behaviour.

2. Abstraction - Archetype identification and relations.

3. Determine architecture structure - System component decomposition, and

relationship identification.

4. System instance description using archetypes and system interfaces.

An architectural design created from functional requirements does not pre-

clude the optimisation of quality requirements during the later architectural de-

sign phases. An architectural design based on functional requirements only will

still have values for its quality requirements; you cannot achieve pure separation

CHAPTER 4. THE STATE OF THE ART 67

of functional and quality requirements. By focussing only on the functional re-

quirements the architecture achieved is more general, and can be iterated over to

optimise. On the other hand, it is unlikely that an architecture fulfilling a particular

set of quality requirements will be applicable in a domain with different functional

requirements.

Phase 2 - Assessing Software Architectures

Traditionally, the software industry will implement a system and then measure

the actual values for the quality system properties. This can produce an expensive

system that will not meet its quality requirements. Hence there is a need to estimate

the quality attributes of a system during the early development stages.

It is not possible to measure system properties at the abstract architectural de-

sign phase. What can be measured is the potential of the architecture to reach the

required levels of quality. While quantitative statements can be made about the

quality attributes of an architecture, it is still very important that these attributes

are designed and implemented correctly within the system.

• qualitative assessment - comparison of overall qualities of two systems

• quantitative assessment - compare values of quality attributes between sys-

tem or versions

• theoretical assessment

CHAPTER 4. THE STATE OF THE ART 68

Customers Marketing Department Engineers

Requirement
Specification

Requirement
Selection

Functionality-Based
Architectural Design

Application Architecture

Quality Attribute
Optimising Solutions

Architecture
Transformation

(Partial) Requirement
Specification

Estimate Quality
Attributes

More
Requirements?

(Partial) Product

Deployment

Product
Complete?

Product

TestingImplementationDetailed
Design

Product Use

Functional
Requirements

Not OK

Quality
Reqs.

Yes

No

Yes

Quality Attribute Oriented
Software Architecture

Design Method

Iterative Product
Development

ProductVersions

Figure 4.9: Context of Architectural Design within the Software Development Pro-

cess

CHAPTER 4. THE STATE OF THE ART 69

4.6 Architecture Description

4.6.1 Genetic Software Engineering

[21, Dromey(2002)] and [19, Dromey(2001)] describes the process for creating

an architecture design that satisfies a set of functional requirements. The “Behav-

ior Tree”TM model used captures both the static and dynamic interaction between

components, normally requiring several separate diagrams in standards such as the

Unified Modelling Language (UML).

The primary benefit of using this model, is that it “provides a clear, simple,

constructive and systematic path for going from a set of functional requirements to

a design that will satisfy those requirements.”

In terms of the software development process, it is very good for the clarifi-

cation and identification of missing, incorrect, or incomplete requirements. The

architecture then generated, is clear, concise, and implementation independent. It

can be shown that a number of different implementations of the same requirements

by different designers, will produce very similar Behavior Trees.

The other advantage for the architectural designer, is that this model can be

transformed using techniques of integration, projection, and pruning of individual

trees from an overall Behavior Tree.

Please refer to SectionA for a detailed specification of this model.

4.6.2 Model Driven Architecture

[40, Siegel and OMG(2001)] and overview by [41, Soley and OMG(2000)] de-

scribe the emerging Model Driven Architecture (MDA) technology as a way of

integrating different information and systems produced on different operating sys-

tems, programming languages, and architectures.

The current main middleware environments today are CORBA, Enterprise Jav-

aBeans, message-oriented middleware, XML/SOAP, COM+ and .NET.

Even though the Object Management Group (OMG) have already produced

CHAPTER 4. THE STATE OF THE ART 70

the CORBA standard that is vendor and system independent, they also realise that

middleware standards will continue to change. Companies will also have a need to

integrate existing systems, as well as adapt current systems to changing enterprise

boundaries, such as from intranet to internet.

MDA is vendor and system independent, and middleware neutral. It uses mul-

tiple architecture core models; including the Unified Modeling Language (UML),

the Meta-Object Facility (MOF), the Common Warehouse MetaModel (CWM),

and XML Metadata Interchange (XMI). Each model will be used to represent dif-

ferent types of structures and requirements, such as enterprise and real-time com-

puting. Refer to Figure4.10.

[3, ORMSC(2001)] details the benefits of using MDA:

• integration of past, current, and future software

• flexibility despite changing infrastructure

• increase in usable lifetime of software

• interoperability of software between departments, customers and suppliers

• multi-platform industry standards will be more widely used

• each standard can be implemented on the platform that is suits best

• standards will be of higher quality.

An example development process using MDA is described:

1. Create a Platform Independent Model (PIM) using UML.

2. Store the PIM in the MOF and input to mapping step to produce a Platform-

Specific Model (PSM) using UML Profiles (e.g. for CORBA).

3. Generate the Application using Java, XML/SOAP etc.

CHAPTER 4. THE STATE OF THE ART 71

Finance

E-Commerce

Telecom

HealthCare

More...

Transportation

Space

Manufacturing

CORBA

XMI/XML

.NETJAVA

WEB
UML

MOF CWM

Model Driven
Architecture

PERVASIVE SERVICES

SECURITY

DIRECTORY

EVENTS

EMBEDDED

FAULT TOLERANT

REAL-TIME

SCALABLE

TRANSACTIONS

PERSISTENCE

Figure 4.10: MDA showing the pervasive services and specialised computing en-

vironments

Model Descriptions

XML Extensible Markup Language, abbreviated XML, describes a class of data

objects called XML documents and partially describes the behavior of com-

puter programs which process them. XML is an application profile or re-

stricted form of SGML, the Standard Generalized Markup Language [ISO

8879]. By construction, XML documents are conforming SGML docu-

ments.

XML documents are made up of storage units called entities, which contain

CHAPTER 4. THE STATE OF THE ART 72

either parsed or unparsed data. Parsed data is made up of characters, some

of which form character data, and some of which form markup. Markup

encodes a description of the document’s storage layout and logical structure.

XML provides a mechanism to impose constraints on the storage layout and

logical structure. [14, Brayet al.(2000)]

SOAP is a lightweight protocol for exchange of information in a decentralised,

distributed environment. It is an XML based protocol that consists of three

parts: an envelope that defines a framework for describing what is in a mes-

sage and how to process it, a set of encoding rules for expressing instances

of application-defined data-types, and a convention for representing remote

procedure calls and responses. SOAP can potentially be used in combination

with a variety of other protocols; however, the only bindings defined in this

document describe how to use SOAP in combination with HTTP and HTTP

Extension Framework. [13, Box et al.(2000)]

XMI The main purpose of XMI is to enable easy interchange of meta-data be-

tween modelling tools (based on the OMG-UML) and meta-data reposito-

ries (OMG-MOF based) in distributed heterogeneous environments. XMI

integrates three key industry standards:

1. XML - eXtensible Markup Language, a W3C standard

2. UML - Unified Modelling Language, an OMG modelling standard

3. MOF - Meta Object Facility, an OMG meta-modelling and meta-data

repository standard

The integration of these three standards into XMI marries the best of OMG

and W3C meta-data and modelling technologies, allowing developers of dis-

tributed systems to share object models and other meta-data over the Internet.

[27, OMG(2002)]

As derived from [27, OMG(2002) pg.C2] the following Figure4.11and XML

CHAPTER 4. THE STATE OF THE ART 73

code listing is an example of using XMI to describe an object hierarchy.

C-2 OMG-XML Metadata Interchange (XMI), v1.2 January 2002

C

The Department class has a relationship called instructor to Instructors, a superclass
for Professor, Postdoc, Lecturer, and Teaching Assistant.

File="Department.xml" Namespace="Department":
<XMI version="1.1" xmlns:UML="org.omg/UML1.3">

<XMI.header>
<XMI.model xmi.name="Department" href="Department.xml"/>
<XMI.metamodel xmi.name="UML" href="UML.xml"/>

</XMI.header>
<XMI.content>

<UML:Class name="Department" xmi.id="Department"/>
<UML:Class name="Instructor" xmi.id="Instructor"/>
<UML:Class name="Professor" xmi.id="Professor" generalization="Instructor"/>
<UML:Class name="Postdoc" xmi.id="Postdoc" generalization="Instructor"/>
<UML:Class name="Lecturer" xmi.id="Lecturer" generalization="Instructor"/>
<UML:Class name="TeachingAssistant" xmi.id="TeachingAssistant" generalization="Instructor"/>
<UML:Association>

<UML:Association.connection>
<UML:AssociationEnd name="instructors" type="Instructor"/>
<UML:AssociationEnd name="memberOf" type="Department"/>

</UML:Association.connection>
</UML:Association>

</XMI.content>
</XMI>

Instructor

Department

instructors

memberOf

Professor Postdoc Lecturer TeachingAssistant

Figure 4.11: Department Relationship Objects using UML

File="Department.xml" Namespace="Department": <XMI version="1.1"

xmlns:UML="org.omg/UML1.3">

<XMI.header>

<XMI.model xmi.name="Department" href="Department.xml"/>

<XMI.metamodel xmi.name="UML" href="UML.xml"/>

</XMI.header>

<XMI.content>

<UML:Class name="Department" xmi.id="Department"/>

<UML:Class name="Instructor" xmi.id="Instructor"/>

<UML:Class name="Professor" xmi.id="Professor"

generalization="Instructor"/>

CHAPTER 4. THE STATE OF THE ART 74

<UML:Class name="Postdoc" xmi.id="Postdoc"

generalization="Instructor"/>

<UML:Class name="Lecturer" xmi.id="Lecturer"

generalization="Instructor"/>

<UML:Class name="TeachingAssistant" xmi.id="TeachingAssistant"

generalization="Instructor"/>

<UML:Association>

<UML:Association.connection>

<UML:AssociationEnd name="instructors" type="Instructor"/>

<UML:AssociationEnd name="memberOf" type="Department"/>

</UML:Association.connection>

</UML:Association>

</XMI.content>

</XMI>

CHAPTER 4. THE STATE OF THE ART 75

4.7 Component Certification and Selection

[25, Firesmith and Henderson-Sellers(2001) pg14] states that there has been a goal

for many years to build software from components. “Components are replace-

able and reusable ‘parts’ from which the application can be directly developed.”

Components require standard, clearly specified interfaces to its services offered

and resources required. These interfaces are the only way of interacting with the

component due to its “black-box” nature. Hence, components must be well tested,

reliable, and trusted as they will be integrated with other internal code to produce

the system.

Even though industry is focussing on the binary executable side of components,

such as with Enterprise JavaBeans and COM+, and how to develop these compo-

nents from scratch, there is still much work to be done in reusing existing code

internal to the organisation, and integrating external third-party code.

This section looks at the process of third-party component certification and

selection.

4.7.1 Standards and Product Certification

[2, Apperlyet al.(2001), Section 42.5] addresses the near-term issues of standard-

isation of software components. The IEEE have devoted considerable time and

resources to software standardisation, but very little to certification that companies

adhere to these standards.

Conformity assessments and certification are third-party review activities that

evaluate the conformance of development and testing processes, as well as assess-

ment of the products under relevant standards.

[2, Apperly et al.(2001)] provides example tables for certification scope (Ta-

ble4.2) and concrete documentation requirements for certification activities (Table

4.3).

Certification against a standard assures that specific requirements have been

CHAPTER 4. THE STATE OF THE ART 76

met. Standards also provide the process for constructing software components

correctly, and for verification against previous phases. [2, Apperly et al.(2001)]

also suggests that future component standards, “will specify when and how to

record potential risks and their mitigation during the component-based software

life-cycle, or in design (ANSI/UL 1998). These standards will establish the means

for a component, including an application and OS component, to return to its pre-

vious, stable, steady state once it enters a risk-addressed state.”

The Unified Modelling Language (UML) is currently being adopted as the stan-

dard way to specify software designs, but there is no standard format. Rational

Corporation is working on the Reusable Assets Specification to provide a standard

format for assets in a software project so that they may be reused for subsequent

projects. It uses both UML and textual meta data to define component interfaces,

and to define context.

[2, Apperlyet al.(2001)] states, “the only way to protect investments in costly

software components and their elements are to ensure unbiased third-party certifi-

cation.” Standardised component models and associated meta data must be used

together, so that consumers can accurately specify and locate components to meet

their requirements.

4.7.2 COTS Myths

labelrcsmyth [43, Tracz(2001)] describes a number of misconceptions about cre-

ating systems from commercial off-the-shelf (COTS) components, and presents

some rules of thumb gained by experience. The following list details the more

relevant issues from this dissertation’s point of view.

1. It’s important to know what COTS components can do to you, not what they

can do for you.

2. COTS-based systems are built “bottom-up”, not “top-down”

3. There is no standard definition for “open system” for the inter-operability

CHAPTER 4. THE STATE OF THE ART 77

problem, and “plug-and-play” doesn’t always work.

4. You need to test COTS components more thoroughly because you don’t un-

derstand how they were built.

5. You can configure your process to meet the COTS component’s capabilities,

not the COTS-based system to meet your requirements. Most integrators

never attempt to modify COTS components, and thoroughly understand the

requirements.

6. The processes COTS products utilise often only reflect the market schedule

and domain experience of the producer, not the current industry best prac-

tices.

7. COTS components exacerbate inadequacies in the system development pro-

cess by compressing the development schedule.

8. The cost of COTS software is 1/100th that of traditional single-use code.

9. You need to evaluate COTS in an environment as close to the operational

environment as possible.

10. By using COTS components you decrease development time and increase

integration time.

11. The selection of COTS components either creates or mitigates risk.

12. A COTS-based system will never completely satisfy a customer’s needs.

4.7.3 COTS Requirements

[38, SQuaRE(2002)] outlines the requirements for Commercial Off-The-Shelf com-

ponents with product description, user documentation, and programs and data.

1. Product Description - commercial documentation or packaging

CHAPTER 4. THE STATE OF THE ART 78

Table 4.2: Certification Scope

1. Analysis plan

• Business rules

• Functional and nonfunctional requirements

• Use case scenarios and use case diagrams

2. Various forms of design diagrams

Development processes and practices, configuration

management, and component library management

4. Evaluation of verification activities

5. Design plan

6. Risk analysis and risk mitigation plans

7. Evaluation of, or participation in, validation activities

• Assurance that the product under certification

actually satisfies the requirements established at the

negotiation of the contract or the voluntary

business-to-business certification activities for the

component or components, the subject of the commerce

Table 4.3: Concrete Documentation According to UL 1998, Sections 3.1-3.4

3.1 A risk analysis shall be conducted to determine:

a) The set of risk, and

b) That the software addresses the identified risks

3.2 The risk analysis shall be based on the safety requirement

for the programmable component

3.3 An analysis shall be conducted to identify the critical,

noncritical, and supervisory sections of the software

3.4 An analysis shall be conducted to identify states for

transitions that are capable of resulting in risk

CHAPTER 4. THE STATE OF THE ART 79

(a) Availability - product description

(b) Contents - understandable, complete, ease of overview

(c) Identification and Indications - unique version and date, supplier, re-

quirements conformance, other COTS interfaces

(d) Functionality - overview of user-callable functions, options, bound-

aries, and built-in security

(e) Reliability - maturity, fault tolerance, recoverability

(f) Usability - user interface type, knowledge required, tools for adaption,

copyright protection

(g) Efficiency - response time, throughput rate, resource utilisation

(h) Maintainability - analysability, changeability, stability, testability

(i) Portability - adaptability, installability, replaceability, and coexistence

(j) Quality in Use - effectiveness, productivity, safety or satisfaction in

specified context of use

2. User Documentation

(a) Completeness - documentation to use, description of all functions, sup-

plied elements, boundary values, installation

(b) Correctness - correct and free from ambiguities and errors

(c) Consistency - free from contradictions

(d) Understandability - by normal user population

(e) Ease of Overview - adequate organisation, contents, index

3. Programs and Data - all documented quality attributes in user documentation

should be executable

(a) Functionality - installation, test cases, self-tests, consistency of data

and terminology

CHAPTER 4. THE STATE OF THE ART 80

(b) Reliability - system should not go into uncontrollable state or corrupt

data

(c) Usability - understandability, undoes, clarity of execution

(d) Efficiency - only as stated in documentation

(e) Maintainability - only as stated in documentation

(f) Portability - only as stated in documentation

(g) Quality in Use - only as stated in documentation

4.7.4 Quality Attribute Evaluation

[5, Barbacciet al.(2001)] states:

• Quality attribute workshops (QAW) provide a method for evaluating the ar-

chitecture of a software-intensive system during the acquisition phase of ma-

jor programs.

• architecture is evaluated against a number of critical quality attributes, such

as availability, performance, security, inter-operability, and modifiability.

• process of eliciting questions allows stake-holders to communicate directly,

thereby exposing assumptions that may not have surfaced during require-

ments capture.

• report provides a rationale for developing the process and describe it in de-

tail.

[9, Bergeyet al.(2000)] states:

• software architecture determines the quality attributes of both the software

and the entire system.

• It is also one of the earliest artifacts available for evaluation.

CHAPTER 4. THE STATE OF THE ART 81

• The QAWs provided the acquiring government agency with a means to eval-

uate each contractors software architectural approach and determine whether

it satisfied the systems quality attribute requirements (e.g., performance,

inter-operability, security).

• also discusses future opportunities for applying a full-scale architecture eval-

uation

[6, Barbacciet al.(1997)] states:

• software quality is the degree to which software possesses a desired combi-

nation of attributes (e.g., reliability, inter-operability).

• describes principles for analysing a software architecture to determine if it

exhibits certain quality attributes.

• how analysis techniques indigenous to the various quality attribute commu-

nities can provide a foundation for performing software architecture evalua-

tion.

• how the principles provide a context for existing evaluation approaches such

as scenarios, questionnaires, checklists, and measurements.

• goal in identifying these principles for attribute-based architecture evaluation

is to better integrate existing techniques and metrics into software architec-

ture practice, not necessarily to invent new attribute-specific techniques and

metrics.

• A longer-term goal is to codify these principles into systematic procedures

or methods for architecture evaluation.

4.7.5 COTS Assessment

[39, Shaw(1996)] states that the conventional doctrine for sufficient, complete,

static and homogeneous specifications do not hold for CBSE because developer

cannot anticipate all possible future uses of components.

CHAPTER 4. THE STATE OF THE ART 82

[32, Polze(1999)]

• most of fault-tolerant, real-time systems have been implemented in embed-

ded settings

• Humboldt University has developed the concept of composite objects as a

filtering bridge between standard middleware platforms and software frame-

works providing services with certain quality-of-service (QoS) guarantees.

• Current research focuses on the CORBA but are also applicable to DCOM

and DCE

• concepts in approach are analytic redundancy, non-interference, inter-operability,

and adaptive abstraction.

[47, Voas and Payne(1998)] discusses the time-to-market vs. the quality of

COTS, and recommends steps for integrators to take before relying on components.

[52, Voas(1998)] states that the arguments for COTS are obvious; required

functionality accessed immediately, cheaper, and more expertly implemented. The

arguments against include too much functionality, and requirements for longevity;

such as Y2K issues. The relationship between the difference in required and actual

functionality, with overall quality of system is also discussed.

[48, Voas(1988)] details a methodology for mitigating the potential for danger-

ous software states to occur.

[44, Voaset al.(1996)] presents an assessment technique for studying failure-

tolerance of large scale component-based systems, by studying the propagation of

information through interfaces in system to determine how much damage will be

done by corrupt information.

[57, Voas(2000)] presents a model that generates accurate operational profiles

for mass-marketed software with usage-profiling performed by independent organ-

isations, detecting bloat-ware and misused/unused features, and providing infor-

mation on platforms most executed by users on, user usage-pattern change for new

CHAPTER 4. THE STATE OF THE ART 83

releases. This will provide more accuracy for testing software between releases

and improved user manuals and tutorials.

[50, Voas(1996)] provides an assessment of the tolerance of interfaces between

components for failures, addressing software maintenance issues.

[55, Voas(1999)] states some of the disadvantages of using COTS components;

they are distributed in fixed executable format, their ability to be maintained is

reduced, and exposure to damage from malicious components is increased because

of hidden code.

[51, Voas(1997)] presents the idea of augmenting software with assertions to

improve defect observation qualities.

[56, Voas(1999)] discusses the trust and quality issues of using existing COTS

software.

[53, Voas(1998)] presents a consumer-oriented methodology for predicting

what impact on system quality a COTS component will have, and outlines ways

of safeguarding against COTS software failure.

[46, Voas and Miller(1995)] discusses the difference between traditional verifi-

cation and testability. Verification tests for likelihood software will fail during use,

whereas testability is the new type of verification for testing whether an incorrect

program will not fail; i.e testing for hidden faults.

[45, Voas and Miller(1992)] discusses the tendency of code to reveal existing

faults during random testing, and quantifies the likelihood that software faults are

not hiding after testing.

[54, Voas(1998)] details the maintenance issues of components developed and

maintained by different people.

[49, Voas(1996)] introduces the variety of behavioral software quality charac-

teristics, other than “black and white” correctness. They do not replace traditional

tests but test additionally for safety/failure-tolerance, and vulnerability/security.

CHAPTER 4. THE STATE OF THE ART 84

4.7.6 Component Evaluation

[34, Seacordet al.(2000)] describes how component reuse suffers from the inabil-

ity of system integrators to effectively identify ensembles of compatible software

components that can be easily integrated into a system. An automated process is

developed for identifying component ensembles that satisfy a system requirements

specification; and for ranking these ensembles based on a knowledge base of sys-

tem integration rules.

Chapter 5

Problem Solution

This section will describe how the problem defined in Section3.1was addressed.

The primary issue to address is how to apply quality attributes to the soft-

ware development process. Section4.1 has demonstrated the need for a complete

and consistent set of functional and non-functional requirements to ensure prod-

uct quality. Section4.4 identifies that also quality processes and technologies are

required within an organisation to ensure product quality.

The need for quality attribute identification, and a trade-off analysis is consis-

tent throughout the literature review. What is not consistent, is how non-functional

requirements and quality attributes are categorised. [26, Gilb(1988)] identifies an

incomplete list of quality attributes with no categorisation. [7, Basset al.(1998)]

identifies which attributes are more important to the user or developer. [36, SQuaRE(2002)]

is trying to address this point by working with the concept of a changing viewpoint

of quality. The requirements of the user, such as responsiveness are translated into

external product requirements such as reliability and then into internal develop-

ment characteristics such as portability. This seems to be an intelligent approach

to how quality actually is used, but whether the emerging standard can be released

in a timely and usable manner are two issues.

The initial approach of this dissertation was to define and categorise a set qual-

ity attributes applicable to our purposes. This was decided against, as most refer-

85

CHAPTER 5. PROBLEM SOLUTION 86

ences are derived from the same primary sources, and [35, ISO 9126(1991)] and

[36, SQuaRE(2002)] are well respected sources within the industry.

In terms of this Solution section, the process for using quality attributes will be

clarified. Ultimately this work will refer to the work being done in [36, SQuaRE(2002)].

The next objective, will be to define the process for software component de-

velopment and reuse, derived from Sections4.5 and4.7. This will allow the dis-

sertation to identify and address some of the primary issues with component reuse.

These include:

• COTS-based systems are black-box, and are not designed to be modified.

Evaluation and testing of components must be done in an environment as

close to operational as possible. Hence difficulty in true 3rd-party certifica-

tion.

• COTS-based systems are designed and built “bottom-up”, not “top-down”.

Hence they are generally not designed to fit into your processes, or your

specific application. You must adapt your processes to allow for the compo-

nent’s.

• By using COTS components you decrease development time and increase

integration time. Effort must be spent creating wrapper and glue-code to

interface the component to your system.

• There is a lack of standardisation of the component-based development pro-

cess, 3rd-party COTS components, and certification.

By defining the process for selecting and adapting components for a system,

a technique for embedding quality attribute and architectural information is sug-

gested. This information could be attached as XML data along with the binary

executable of the component, assisting 3rd-party certification. Integrity and per-

formance of the code would not be violated. However the means of being able

to test and evaluate the component’s behaviour and quality attributes through its

architecture are a definite advantage.

CHAPTER 5. PROBLEM SOLUTION 87

Section4.5 suggest the software architecture is the best place to determine

quality attributes. There is an obvious time and cost benefit in identifying issues

during the architectural phase over the implementation phase. Additionally, [7,

Basset al.(1998)] asserts that quality primarily is to be found in the architecture,

and that a developer must be careful when integrating components into their sys-

tem, that they do not compromise the quality inherit to this architecture. Most

quality attributes are visible the architectural level.

This introduces the main scope of work in this Solution Section; the process

for creating, adapting, and identifying quality attributes within a software archi-

tecture. The Behavior Tree model will be used represent a software architecture

description. It provides a clear methodology for representing and validating func-

tional requirements within an architecture. Quality attributes generally relate to the

overall behaviour of a system, not just some individual functionality. The primary

representation of Behavior Trees is concerned with the dynamic behaviour of the

system, so inherently they are related. The model also provides many techniques

for transforming the architecture, by pruning, projection, and integration, making

this model easier to use and adapt for this dissertation.

CHAPTER 5. PROBLEM SOLUTION 88

5.1 Quality Attributes Model

This section will describe in detail a model for the description and categorisation

of quality attributes within a software components. Primarily this will describe

how quality attribute specification fits into the software development process. Sec-

tion 5.2will describe the component development process.

5.1.1 The Software Development Process

[17, ISO/IEC 12207(1995)], in part, provides an industry standard for the software

development process. It provides models for the activities shown in Figure5.1,

as well as component detailed design, external interface detailed design, database

detailed design, unit test requirements definition.

This dissertation is concerned with modelling the process from software re-

quirements analysis to software architectural design, as justified in Section3.2.

The remainder of this section is an extract from [17, ISO/IEC 12207(1995)] de-

tailing the activities and tasks associated with software requirements analysis and

architectural design.

For Software requirements analysis, the following tasks are described:

• The developer shall establish and document software requirements, includ-

ing the quality characteristics specifications, described below. Guidance for

specifying quality characteristics may be found in ISO/IEC 9126.

1. Functional and capability specifications, including performance, physi-

cal characteristics, and environmental conditions under which the soft-

ware item is to perform;

2. Interfaces external to the software item;

3. Qualification requirements;

4. Safety specifications, including those related to methods of operation

and maintenance, environmental influences, and personnel injury;

CHAPTER 5. PROBLEM SOLUTION 89

Software Requirements Analysis

Software Architectural Design

Software Detailed Design

Software Coding and Testing

Software Integration

Software Qualification Testing

Figure 5.1: Software Development Activities

CHAPTER 5. PROBLEM SOLUTION 90

5. Security specifications, including those related to compromise of sen-

sitive information;

6. Human-factors engineering (ergonomics), including those related to

manual operations, human-equipment interactions, constraints on per-

sonnel, and areas needing concentrated human attention, that are sen-

sitive to human errors and training;

7. Data definition and database requirements;

8. Installation and acceptance requirements of the delivered software prod-

uct at the operation and maintenance site(s);

9. User documentation;

10. User operation and execution requirements;

11. User maintenance requirements.

• The developer shall evaluate the software requirements considering the cri-

teria listed below. The results of the evaluations shall be documented.

1. Traceability to system requirements and system design;

2. External consistency with system requirements;

3. Internal consistency;

4. Testability;

5. Feasibility of software design;

6. Feasibility of operation and maintenance.

• The developer shall conduct joint review(s) in accordance with 6.6. Upon

successful completion of the review(s), a baseline for the requirements of

the software item shall be established.

For the software architectural design activity, the following tasks are defined:

CHAPTER 5. PROBLEM SOLUTION 91

• The developer shall transform the requirements for the software item into an

architecture that describes its top-level structure and identifies the software

components. It shall be ensured that all the requirements for the software

item are allocated to its software components and further refined to facilitate

detailed design. The architecture of the software item shall be documented.

• The developer shall develop and document a top-level design for the inter-

faces external to the software item and between the software components of

the software item.

• The developer shall develop and document a top-level design for the database.

• The developer should develop and document preliminary versions of user

documentation.

• The developer shall define and document preliminary test requirements and

the schedule for Software Integration.

• The developer shall evaluate the architecture of the software item and the

interface and database designs considering the criteria listed below. The

results of the evaluations shall be documented.

1. Traceability to the requirements of the software item;

2. External consistency with the requirements of the software item;

3. Internal consistency between the software components;

4. Appropriateness of design methods and standards used;

5. Feasibility of detailed design;

6. Feasibility of operation and maintenance.

5.1.2 Software Requirements Categorisation

Ways of defining and measuring individual attributes are standard now, as shown

in the research sections. The long-standing issue of using quality non-functional

CHAPTER 5. PROBLEM SOLUTION 92

Non-Functional Requirements

Constraints
Performance

[priority-based premptive scheduling,
etc.]

SafetyExternal Interface Security

Business Rules

Availability

Efficiency

Flexibility
[layering, etc.]

Integrity

Interoperability

Reliability
[analytical redundancy, etc]

Robustness

Usability

Maintainability

Portability

Reusability

Testability

external internal

Quality Attributes

Effectiveness

Productivity

Safety

Satisfaction

usage

Functional Requirements

Software Requirements

Figure 5.2: Categories of Software Requirements

requirements is how they are categorised and sub-categorised.

As shown in Figure5.2, software requirements are generally categorised into

functional and non-functional requirements as qualified in Section4.1. Quality

attributes are a sub-class of non-functional requirements.

The Software Requirements Specification Document (IEEE 830) provides a

standard way of documenting all the requirements for a product. In terms of re-

quirements analysis, defined in5.1.1, a more detailed way of categorising and

analysing software requirements is needed. ISO 9126, is recommended, but there is

a new standard, ISO 25000 Software Quality Requirements and Evaluation (SQuaRE)

forthcoming.

The emerging SQuaRE standard provides a way of grouping these attributes

which differs from earlier references. It uses changing viewpoints (user, external,

and internal) and changing attribute relationships between viewpoints. It attempts

to capture the dynamic nature of attributes and their use during the development

CHAPTER 5. PROBLEM SOLUTION 93

User needs

External
quality

requirements

Internal
quality

requirements

Quality
In use

External
quality

Internal
quality

system
behaviour

Internal
metrics

Requirements
Specification

Design and
development

Operation

System integration
And testing

Real
world

software
attributes

Quality in use
metrics

External
metrics

Contribute to specifying

Contribute to specifying

indicates

indicates

use and feedback

validation

verification /validation

Figure 5.3: Quality in the software life-cycle

lifecycle.

As shown in the Quality in the Software Lifecycle diagram (Figure5.3), de-

rived from [36, SQuaRE(2002)] in Section4.2.5; a set of user requirements or

needs is translated to external quality requirements at the requirements specifica-

tion stage, and internal quality requirements at the design and development phase.

The categorisation of individual quality attributes in shown in Figures5.4and5.5.

There are issues with categorisation:

1. incompleteness: all references never profess to include all quality attributes,

only the most important ones.

2. complexity: all attributes have complex relationships between themselves,

sometime direct or indirect. Hard-line categorisation tends not to reflect

these relationships.

CHAPTER 5. PROBLEM SOLUTION 94

external and
internal
quality

functionality reliability

maturity
fault tolerance
recoverability

usability

understandability
learnability
operability

attractiveness

efficiency

time behaviour
resource
utilisation

maintainability

analysability
changeability

stability
testability

portability

adaptability
installability
co-existence
replaceability

suitability
accuracy

interoperability
security

functionality
compliance

reliability
compliance

usability
compliance

efficiency
compliance

maintainability
compliance

portability
compliance

Figure 5.4: Model for internal and external quality

quality in
use

effectiveness productivity safety satisfaction

Figure 5.5: Model for quality in use

CHAPTER 5. PROBLEM SOLUTION 95

3. conflicting categories: Safety is often modelled as both a non-functional re-

quirement as well as a quality attribute. Performance is only a non-functional

requirement, not a quality attribute.

Ultimately the SQuaRE standard provides a new, detailed look at product qual-

ity and metrics, and guides for use. When actually published, it should address

most of the issues found to some extent.

5.1.3 Quality Attribute Specification

This section provides an overview of the definitions, and trade-offs for a number

of individual quality attributes. Categorisation issues using the SQuaRE standard

have been discussed in Section5.1.2. The purpose of this section was to show a

summary of how quality attributes are defined within the literature review. This

dissertation will use these definitions as an initial point for identifying quality at-

tributes within a software architecture (Section5.4). Defining metrics for these

attributes is being created in the SQuaRE standard, and is outside of the scope of

this dissertation.

• Availability

– Definition: percentage of planned uptime during which system is ac-

tually available for use and fully operational. How much a system is

usefully available to perform the work which it was designed to do

– Context: important primarily to users and critical for mainframe sys-

tems

– Trade-off Relationships:

∗ Reliability – direct

∗ Robustness – direct

• Efficiency

CHAPTER 5. PROBLEM SOLUTION 96

– Definition: how well the system utilises processor capacity, disk space,

memory, or communication bandwidth

– Context: important primarily to users and critical for embedded sys-

tems

– Trade-off Relationships:

∗ Flexibility – inverse

∗ Interoperability – inverse

∗ Maintainability – inverse

∗ Portability – inverse

∗ Reliability – inverse

∗ Robustness – inverse

∗ Testability – inverse

∗ Usability – inverse

• Flexibility

– Definition: how much effort is needed to add new capabilities to the

product

– Context: important primarily to users

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Integrity – inverse

∗ Maintainability – direct

∗ Portability – direct

∗ Reliability – direct

∗ Testability – direct

• Integrity (Security)

CHAPTER 5. PROBLEM SOLUTION 97

– Definition: trustworthiness of the system to be in the right state, with

security intact

– Context: important primarily to users

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Interoperability – inverse

∗ Reusability – inverse

∗ Testability – inverse

∗ Usability – inverse

• Interoperability

– Definition: how easily the product can exchange data or services with

other systems. The ability to communicate easily with other assets, on

different platforms and machines, and be integrated into an application.

– Context: important primarily to users

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Integrity – inverse

∗ Portability – direct

• Reliability

– Definition: measure of the degree to which the system does what it is

intended to do, as opposed to something else. The probability of soft-

ware executing without failure for a specified period of time. Percent-

age of correctly performed operations. The length of time the system

runs before revealing a new defect

– Context: important primarily to users

CHAPTER 5. PROBLEM SOLUTION 98

– Trade-off Relationships:

∗ Availability – direct

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Maintainability – direct

∗ Robustness – direct

∗ Testability – direct

∗ Usability – direct

• Robustness

– Definition: degree to which a system or component continues to func-

tion correctly when confronted with invalid input data, defects in con-

nected software or hardware components, or unexpected operating con-

ditions.

– Context: important primarily to users

– Trade-off Relationships:

∗ Availability – direct

∗ Efficiency – inverse

∗ Reliability – direct

∗ Usability – direct

• Usability

– Definition: how well people are going to be able and be motivated to

use the system practically.

– Context: important primarily to users

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Robustness – direct

CHAPTER 5. PROBLEM SOLUTION 99

∗ Testability – inverse

• Maintainability

– Definition: how quickly an unreliable system can be brought to a reli-

able state

– Context: important primarily to developers and critical for mainframe

systems

– Trade-off Relationships:

∗ Availability – direct

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Reliability – direct

∗ Testability – direct

• Portability

– Definition: the ease of moving a system from one environment to an-

other. The effort required to migrate a piece of software from one oper-

ating environment to another. The ability to run on different platforms.

– Context: important primarily to developers

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Interoperability – direct

∗ Maintainability – inverse

∗ Reusability – direct

∗ Testability – direct

∗ Usability – inverse

CHAPTER 5. PROBLEM SOLUTION 100

• Reusability

– Definition: extent to which a software component can be used in appli-

cations other than the one for which it was initially developed.

– Context: important primarily to developers

– Trade-off Relationships:

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Integrity – inverse

∗ Interoperability – direct

∗ Maintainability – direct

∗ Portability – direct

∗ Reliability – inverse

∗ Testability – direct

• Testability

– Definition: ease with which the software components or integrated

product can be tested to find defects.

– Context: important primarily to developers

– Trade-off Relationships:

∗ Availability – direct

∗ Efficiency – inverse

∗ Flexibility – direct

∗ Maintainability – direct

∗ Reliability – direct

∗ Usability – direct

CHAPTER 5. PROBLEM SOLUTION 101

Other Quality Attributes

• Extensive Use of Legacy Systems – careful definition of appropriate integra-

tion mechanisms

• Process Capacity - ability to process units of work in units of time

• Responsiveness - reaction to a single event

• Storage Capacity - capacity of a part of a system to store units of a defined

thing

• Improvability - efficiency of making minor adaptations, changes and im-

provements to the system

• Extendability - the ease of adding new factors to an existing system

• Buildability – ease of constructing a desired system on-time within given

resources

• Modifiability – modularised, encapsulating components

• Integrability – consistent component interfaces; uses relation

Non-Functional Requirements

• Performance – inter-component communication to exploit parallelism - Dis-

cernable while the system executes

• Security – specialised components such as secure kernels or authentication

servers - Discernable while the system executes. Since a component con-

tains executable code and is reused as a black box among a community of

developers, the reuser must be able to control the origin of the asset, and its

access to private resources.

• Resource Attributes - costs of existence (development, use and maintenance)

of a system

CHAPTER 5. PROBLEM SOLUTION 102

• Business Attributes

– Time-to-Market – pressure to use COTS

– Cost – ability to use assets from in-house

– Projected Lifetime of the System – modifiability and portability issues

- Business qualities affected by the architecture

– Targeted Market – portability, functionality, as well as performance,

reliability, and usability on various platforms

– Rollout Schedule – flexibility and customisability if product to be re-

leased only with base functionality

CHAPTER 5. PROBLEM SOLUTION 103

5.2 Component Development

Extensive use of COTS and product-line components within systems will effect

each of the traditional software development phases. Phases such as requirements

specification, design, coding, and integration will be changed. Some important

component-based activities such as encapsulation, have no equivalent in the tradi-

tional lifecycle. Hence [15, Carney(1997)] from SEI outlines a process for software

component development and re-use. (Figure5.6)

A? A

B

C

B

C

?

?

?

A

C

B A

C

B

C'

Off-The-Shelf
Components

Qualified
Components

Adapted
Components

Assembled
Components

Refreshed
Components

1.0 Qualification 2.0 Adaption 3.0 Assembly 4.0 Refresh

Figure 5.6: COTS System Integration Life-cycle

?+

Documentation ImplementationComponent
Requirements

Evaluate/Qualify Candidate

C

Adapted
Component

C

Qualified
Component

Figure 5.7: COTS Component Qualification Phase

Figure5.7illustrates the first activity of the component development lidecycle.

CHAPTER 5. PROBLEM SOLUTION 104

Selecting and qualifying appropriate COTS products means surveying the market-

place in anticipation of the new system development. This in itself is an issue,

when there is no one standard for developing and distributing products.

This dissertation presents a variation of this qualification process, (Figure5.8)

which specifically provides more information presented in a standard form. This is

an initial attempt to present standardisation, as well as the analytical information

required by a 3rd-party system integrator.

Component
Requirements Individual

Requirement
Behaviour

Overall
Component
Behaviour

0101000
1100121
2121212

Component
Implementation

Develop an Architecture

Figure 5.8: COTS Component Architecture Development

Requirements Architecture

0101000
1100121
2121212

Implementation

Develop a Component

Documentation
for integration

maintenance etc

+

Open
Component

=

Figure 5.9: COTS Component Augmentation

Figures5.8 and5.9 demonstrate a way of including the original requirements

specification and the derived architecture description, along with the binary imple-

mentation of the component. Current practice is to only include a basic specifica-

CHAPTER 5. PROBLEM SOLUTION 105

Off-The-Shelf
Components

Qualified
Components

Adapted
Components

Assembled
Components

1.0 Qualification 2.0 Adaption 3.0 Assembly

Figure 5.10: Updated COTS Life-cycle

tion and interface guide with the component. Quality attribute specifications and

other vital information such as risk mitigation strategies tend not to be included.

There are valid reasons why a software supplier does not wish to reveal the con-

tents of their source code, but by at least providing the architecture description,

some high level validation of the system can be performed for 3rd-party certifica-

tion. A system that is required to be safety-critical does not just have to take the

supplier’s word that it meets its requirements.

The updated lifecycle model shown in Figure5.10displays one advantage of

providing quality information along with the component; the selection, evaluation,

and adaptation phases are so much clearer. Figure5.11 demonstrates a way of

including requirements, and Behavior Tree architecture data using the standard

XML Schema format. This will allow 3rd-party tools to automatically analysis and

evaluate the static and dynamic data within a component prior to implementation.

Lack of standardisation and certification remains the biggest issue within the

CHAPTER 5. PROBLEM SOLUTION 106

<?x ml
version="1.0"?> <cs
xmlns:xsi="http://www.w3.o
xsi:schemaLocation="file:co
<c> <string>
<alpha><uppercase>D
<alpha><uppercase>O
<alpha><uppercase>O
<alpha><uppercase>R

• Sun Java
Datatype • MS Access
Database • MSVisio

 Graphic

Behaviour Tree
Architecture

Requirement FR01
Requirement FR02
Requirement FR03
Requirement FR04
Requirement FR05
Requirement FR06
Requirement FR07
Requirement FR08
Requirement FR09
Requirement FR10

Requirements XML Values

Converted Data &
Data Structure

<?x ml
version="1.0"?> <cs
xmlns:xsi="http://www.w3.o
xsi:schemaLocation="file:co
<c> <string>
<alpha><uppercase>D
<alpha><uppercase>O
<alpha><uppercase>O
<alpha><uppercase>R

XML Schema
C{s} ::= C OP [s|
 s ::= State |C'[s']|

 d ::= s | Boolean_E

exp ::= arithmetic

EBNF Behaviour
Tree Structure
Definition

+

Figure 5.11: XML Specification of Requirements and Architecture

software component industry today. In particular domains, there can be a standard

practice and specification for components. This dissertation has merely identified

a need for further work. With this in mind, the model proposed is not intended to

replace any of the standards in use by the industry today. It only serves to demon-

strate that it is possible to provide more useful information which will benefit all

people involved in the component development and re-use industry.

The software architecture is the first key artefact of the development process.

As this information is required for our proposed model, the next section will ex-

amine the process of generating a Behavior Tree architecture description from a

set of functional requirements. Later these architectures, and hence the component

as a whole, will be analysed and adapted with respect to certain quality attribute

requirements.

CHAPTER 5. PROBLEM SOLUTION 107

5.3 Component Development Example

001010101010101010101010101
10110101111000011010100001

code

high-level
requirements system

behaviour

possible componentbehaviours

Figure 5.12: Component Specification and Composition

This example will take an initial set of requirements for ways of storing and

accessing collections of resources, and produce a number of architectural descrip-

tions. These descriptions will be generalised and combined into software compo-

nents, that will be reused in a later case-study.

See AppendixC for an example implementation of the generic collection sys-

tem using Java 1.4.0.

From [28, Lambert and Osborne(2000)] there are four broad categories of col-

lections; linear, hierarchical, graph, and unordered. For this component example a

linear queue and stack, and an unordered set will be implemented. In the industry

there is no one standard for the naming and implementation of these collections.

The software requirements we will follow are derived from the conventions of the

Java Software Development Kit.

As an overview:

Stack Each item, except the first and last, has a unique predecessor and successor.

All items are ordered, but not sorted. Items can be accessed from end only

using operations calledpushandpop. e.g. a stack of dinner plates can only

be added to and removed from the top plate.

Queue Items are inserted at one end, and removed at the other end using the oper-

ationsqueueanddequeue. e.g. waiting in line for a bank teller.

CHAPTER 5. PROBLEM SOLUTION 108

Set Items are stored in no particular order, but you can retrieve an item by a unique

characteristic such as id or registration number. No matter how many times

you add an item to a set, it will never contain more than one reference to that

item. e.g you can be only registered once in a hospital at any given time.

CHAPTER 5. PROBLEM SOLUTION 109

5.3.1 Stack

This section lists all the functional requirements for a stack-type linear collection.

These requirements will be used as the basis of the architecture descriptions in

shown in Figures5.13, 5.17, and 5.21. A basic stack is augmented with require-

ments for external operator control of availability, as well as concurrency.

Basic Stack

The following list details the functional requirements for the Basic Stack. Please

refer to Figure5.13for the Behavior Tree description of this architecture.

FR-01 Resources added to and removed from a stack will follow the process of

“first-in, last-out”.

FR-02 The stack will be able to keep track of the total number of resources cur-

rently in its stack, knowing when it is full or empty. The maximum size of

the stack is a pre-defined constant for the system.

FR-03 The stack must be not full, for a resource producer to be able to put (push)

a new resource on the stack.

FR-04 The stack must be not empty, for a resource consumer to be able to take

(pop) a resource off the stack.

FR-05 The stack is initially has no resources, and is able to accept at least one

resource.

Stack with Availability Control

In addition to the requirements specified for the basic stack, these requirements al-

low specific blocking of the addition and removal processes by an external Operator

component. This will allow the stack to be gracefully shutdown when requested,

by first blocking all new resource additions, and when the stack is finally empty,

the stack will then become unavailable.

CHAPTER 5. PROBLEM SOLUTION 110

The following list details the functional requirements for the Stack with Avail-

ability Control. Please refer to Figure5.17for the Behavior Tree description of this

architecture.

FR-06 An Operator must make the stack available before additions and removals

can commence. When the stack is available, the Operator can request that

the stack shutdown; initially halting any new resource additions, and when

the stack is empty, no further removals will be allowed, as the stack becomes

unavailable.

FR-07 The stack must be available for additions, before any new resources can be

added to the stack.

FR-08 The stack must be available for removals, before any resources can be re-

moved from the stack.

Stack with Concurrency

In addition to the requirements specified for the basic stack and stack with avail-

ability control, these requirements make the stack’s addition, removal, and control

processes multi-threaded, with mutual exclusion regions. As a demonstration of

availability, this will allow simultaneous additions, and removals by multiple pro-

ducers and consumers.

The following list details the functional requirements for the Concurrent Stack.

Please refer to Figure5.21for the Behavior Tree description of this architecture.

FR-09 To ensure integrity of data, while a resource is actually being added, or

removed, and the stack size is being calculated, no concurrent thread may

interrupt (preempt) this operation.

FR-10 The addition, removal, and operator shutdown processes must be imple-

mented as concurrent threads of operations, for high availability.

CHAPTER 5. PROBLEM SOLUTION 111

B
as

ic
 S

ta
ck

B
eh

av
io

ur

1,
 2

, 3
ST

AC
K

[>
 re

so
ur

ce
 <

 ;
[..

.]*
]

2
ST

AC
K

[in
cr

em
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

1,
 2

, 4
ST

AC
K

[<
 re

so
ur

ce
 >

 ;
[..

.]*
]

2
ST

AC
K

[d
ec

re
m

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
N

O
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3
ST

AC
K

?
NO

T
: f

ul
l ?

4
ST

AC
K

?
NO

T
: e

m
pt

y ?
3

ST
AC

K
?

 fu
ll ?

4
ST

AC
K

?
 e

m
pt

y ?

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
ST

AC
K

[a
va

ila
bl

e]

3
PR

O
D

U
C

ER
??

 re
qu

es
te

d-
ad

di
tio

n
??

4
C

O
N

SU
M

ER
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
ST

AC
K

^
[a

va
ila

bl
e]

3,
 4

, 5
ST

AC
K ̂

[a
va

ila
bl

e]
3,

 4
, 5

ST
AC

K
^

[a
va

ila
bl

e]

5
ST

AC
K

[e
m

pt
y]

5
ST

AC
K

[]

5
ST

AC
K

[N
O

T
: f

ul
l]

3,
 4

, 5
ST

AC
K

^
[a

va
ila

bl
e]

3
ST

AC
K

<
 fu

ll-
m

es
sa

ge
 >

3
P

R
O

D
U

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4

, 5
ST

AC
K

^
[a

va
ila

bl
e]

4
ST

AC
K

<
 e

m
pt

y-
m

es
sa

ge
 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

3,
 4

, 5
ST

AC
K ̂

[a
va

ila
bl

e]

3,
 4

, 5
ST

AC
K ̂

[a
va

ila
bl

e]
2

ST
AC

K
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
N

O
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3,
 4

, 5
ST

AC
K

^
[a

va
ila

bl
e]

2
ST

AC
K

[N
O

T:
 e

m
pt

y]
2

ST
AC

K
[N

O
T:

 fu
ll]

Figure 5.13: Basic Stack Behaviour

CHAPTER 5. PROBLEM SOLUTION 112

3, 4, 5 STACK
[available]

3 PRODUCER
?? requested-addition ?? 4 CONSUMER

?? requested-resource ??

5 STACK
[empty]

5 STACK
[]

5 STACK
[NOT : full]

Figure 5.14: Initialisation Part of Stack

1, 2, 3 STACK
[> resource < ; [...]*]

2 STACK
[incremented-resources-total]

2 STACK
? resources-total = max ?

2 STACK
[full]

2 STACK
? NOT: resources-total = max ?

2 STACK
[NOT: full]

3 STACK
? NOT : full ? 3 STACK

? full ?

3 PRODUCER
< resource >

3 PRODUCER
?? requested-addition ??

3, 4, 5 STACK ^
[available]

3, 4, 5 STACK ̂
[available]

3, 4, 5 STACK ^
[available]

3 STACK
< full-message >

3 PRODUCER
> full-message <

2 STACK
? resources-total = 0 ?

2 STACK
[empty]

2 STACK
? NOT: resources-total = 0 ?

2 STACK
[NOT: empty]

3, 4, 5 STACK ^
[available]

2 STACK
[NOT: empty]

Figure 5.15: Producer Process for Stack

CHAPTER 5. PROBLEM SOLUTION 113

1, 2, 4 STACK
[< resource > ; [...]*]

2 STACK
[decremented-resources-total]

2 STACK
? resources-total = 0 ?

2 STACK
[empty]

2 STACK
? NOT: resources-total = 0 ?

2 STACK
[NOT: empty]

4 STACK
? NOT : empty ? 4 STACK

? empty ?

4 CONSUMER
> resource <

4 CONSUMER
?? requested-resource ??

3, 4, 5 STACK ^
[available]

3, 4, 5 STACK ^
[available]

4 STACK
< empty-message >

4 CONSUMER
> empty-message <

2 STACK
? resources-total = max ?

2 STACK
[full]

2 STACK
? NOT: resources-total = max ?

2 STACK
[NOT: full]

3, 4, 5 STACK ̂
[available]

3, 4, 5 STACK ̂
[available]

2 STACK
[NOT: full]

Figure 5.16: Consumer Process for Stack

CHAPTER 5. PROBLEM SOLUTION 114

1,
 2
,
3,
 7

ST
AC

K
[>

 re
so

ur
ce

 <
 ;

[..
.]*

]

2
ST

AC
K

[in
cr

em
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

1,
 2
,
4,
 8

ST
AC

K
[[

...
]*;

 <
 re

so
ur

ce
 >

]

2
ST

AC
K

[d
ec

re
m

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3
PR

O
DU

C
ER

<
re

so
ur

ce
 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4
,
5,
 6

ST
AC

K
[a

va
ila

bl
e]

3
PR

O
DU

C
ER

??
 re

qu
es

te
d-

ad
dit

ion
 ?

?
4

C
O

N
SU

M
ER

??
 re

qu
es

te
d-

re
so

ur
ce

 ?
?

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

5
ST

AC
K

[e
m

pt
y]

5
ST

AC
K

[]

5
ST

AC
K

[N
O

T
: f

ul
l]

3,
 4
,
5

ST
AC

K ̂
[a

va
ila

bl
e]

3
ST

AC
K

<
 fu

ll-
m

es
sa

ge
 >

3
PR

O
DU

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4
,
5

ST
AC

K ̂
[a

va
ila

bl
e]

4
ST

AC
K

<
 e

m
pt

y-
m

es
sa

ge
 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

2
ST

AC
K

[N
O

T:
 e

m
pt

y]
2

ST
AC

K
[N

O
T:

 fu
ll]

St
ac

k
w

ith
 A

va
ila

bi
lit

y
C

on
tr

ol

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
un

av
ail

ab
le

 ?
?

6
ST

AC
K

[N
O

T:
 a

va
ila

bl
e-

fo
r-a

dd
itio

n]

6
ST

AC
K

?
em

pt
y ?

6
ST

AC
K

[N
O

T:
 a

va
ila

bl
e-

fo
r-r

em
ov

al]

6
ST

AC
K

?
NO

T
: e

m
pt

y ?

3,
 4
,
5,
 6

ST
AC

K ̂
[a

va
ila

bl
e]

6
ST

AC
K ̂

[N
O

T
: a

va
ila

bl
e]

5,
 6

ST
AC

K
[N

O
T

: a
va

ila
bl

e]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ai
lab

le
??

6
ST

AC
K

[a
va

ila
bl

e-
fo

r-a
dd

itio
n]

6
ST

AC
K

[a
va

ila
ble

-fo
r-r

em
ov

al]

3
ST

AC
K

?
NO

T
: f

ul
l ?

7
ST

AC
K

?
av

ail
ab

le-
fo

r-a
dd

itio
n

?

3
ST

AC
K

?
 fu

ll ?

7
ST

AC
K

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

4
ST

AC
K

?
NO

T
: e

m
pt

y ?

8
ST

AC
K

?
av

ail
ab

le-
fo

r-r
em

ov
al

 ?

4
ST

AC
K

?
 fu

ll ?

8
ST

AC
K

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

Figure 5.17: Stack Behaviour with External Operator Control Augmentation

CHAPTER 5. PROBLEM SOLUTION 115

3, 4, 5, 6
STACK

[available]

5
STACK
[empty]

5
STACK

[]

5
STACK

[NOT : full]

5, 6
STACK

[NOT : available]

6
OPERATOR

?? requested-available ??

6
STACK

[available-for-addition] 6
STACK

[available-for-removal]

Figure 5.18: Updated Initialisation Part of Stack

CHAPTER 5. PROBLEM SOLUTION 116

6
OPERATOR

?? requested-unavailable ??

6
STACK

[NOT: available-for-addition]

6
STACK

? empty ?

6
STACK

[NOT: available-for-removal]

6
STACK

? NOT : empty ?

3, 4, 5, 6
STACK ̂
[available]

6
STACK ̂

[NOT : available]

Figure 5.19: Additional Operator Control Process for Stack

CHAPTER 5. PROBLEM SOLUTION 117

3
PRODUCER
< resource >

3
PRODUCER

?? requested-addition ??

3
STACK

< full-message >

3
STACK

? NOT : full ?

7
STACK

? available-for-addition ?

3
STACK
? full ?

7
STACK

? NOT : available-for-addition ?

Figure 5.20: Alterations to Producer Process

CHAPTER 5. PROBLEM SOLUTION 118

1,
 2

, 3
, 7

ST
AC

K
[>

 re
so

ur
ce

 <
 ;

[..
.]*

]

2
ST

AC
K

[in
cr

em
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

1,
 2

, 4
, 8

ST
AC

K
[<

 re
so

ur
ce

 >
 ;

[..
.]*

]

2
ST

AC
K

[d
ec

re
m

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
, 6

ST
AC

K
[a

va
ila

bl
e]

3,
 1

0
PR

O
D

U
C

ER
 ||

??
 re

qu
es

te
d-

ad
di

tio
n

??
4,

 1
0

C
O

N
SU

M
ER

 ||
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
, 6

ST
AC

K ̂
[a

va
ila

ble
]

3,
 4

, 5
, 6

ST
AC

K
^

[a
va

ila
bl

e]
3,

 4
, 5

, 6
ST

AC
K ̂

[a
va

ila
bl

e]

5
ST

AC
K

[e
m

pt
y]

5
ST

AC
K

[]

5
ST

AC
K

[N
O

T
: f

ul
l]

3,
 4

, 5
ST

AC
K ̂

[a
va

ila
bl

e]

3
ST

AC
K

<
 fu

ll-
m

es
sa

ge
 >

3
PR

O
DU

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4

, 5
ST

AC
K ̂

[a
va

ila
ble

]

4
ST

AC
K

<
 e

m
pt

y-
m

es
sa

ge
 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
ST

AC
K

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[fu
ll]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
ST

AC
K

[N
O

T:
 fu

ll]

3,
 4

, 5
, 6

ST
AC

K
^

[a
va

ila
bl

e]

3,
 4

, 5
, 6

ST
AC

K
^

[a
va

ila
bl

e]
2

ST
AC

K
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
ST

AC
K

[e
m

pt
y]

2
ST

AC
K

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
ST

AC
K

[N
O

T:
 e

m
pt

y]

3,
 4

, 5
, 6

ST
AC

K ̂
[a

va
ila

bl
e]

2
ST

AC
K

[N
O

T:
 e

m
pt

y]
2

ST
AC

K
[N

O
T:

 fu
ll]

C
on

cu
rr

en
t S

ta
ck

6,
 1

0
O

PE
R

AT
O

R
 ||

??
 re

qu
es

te
d-

un
av

ai
lab

le
 ?

?

6
ST

AC
K

[N
O

T:
 a

va
ila

bl
e-

fo
r-a

dd
itio

n]

6
ST

AC
K

??
 em

pt
y ?

?

6
ST

AC
K

[N
O

T:
 a

va
ila

bl
e-

fo
r-r

em
ov

al]

6
ST

AC
K

?
NO

T
: e

m
pt

y ?

3,
 4

, 5
, 6

ST
AC

K ̂
[a

va
ila

ble
]

6
ST

AC
K

^
[N

O
T

: a
va

ila
bl

e]

5,
6

ST
AC

K
[N

O
T

: a
va

ila
ble

]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ai
lab

le
??

6
ST

AC
K

[a
va

ila
bl

e-
fo

r-a
dd

itio
n]

6
ST

AC
K

[a
va

ila
bl

e-
fo

r-r
em

ov
al]

3
ST

AC
K

?
N

O
T

: f
ul

l ?

7
ST

AC
K

?
av

ai
la

ble
-fo

r-a
dd

itio
n

?

3
ST

AC
K

?
 fu

ll ?

7
ST

AC
K

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

4
ST

AC
K

?
NO

T
: e

m
pt

y ?

8
ST

AC
K

?
av

ail
ab

le-
fo

r-r
em

ov
al

 ?

4
ST

AC
K

?
 fu

ll ?

8
ST

AC
K

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

Figure 5.21: Stack Behaviour with Concurrency Augmentation

CHAPTER 5. PROBLEM SOLUTION 119

6, 10 OPERATOR ||
?? requested-unavailable ??

6 STACK
[NOT: available-for-addition]

6 STACK
?? empty ??

6 STACK
[NOT: available-for-removal]

6 STACK
? NOT : empty ?

3, 4, 5, 6 STACK ̂
[available]

6 STACK ^
[NOT : available]

Figure 5.22: Updated Operator Control Process for Concurrency

CHAPTER 5. PROBLEM SOLUTION 120

1, 2, 3, 7 STACK
[> resource < ; [...]*]

2 STACK
[incremented-resources-total]

3 PRODUCER
< resource >

3, 10 PRODUCER ||
?? requested-addition ??

3, 4, 5 STACK ̂
[available]

3 STACK
< full-message >

3 PRODUCER
> full-message <

3 STACK
? NOT : full ?

7 STACK
? available-for-addition ?

3 STACK
? full ?

7 STACK
? NOT : available-for-addition ?

Figure 5.23: Updated Producer Process with Threads and Critical Regions

CHAPTER 5. PROBLEM SOLUTION 121

5.3.2 Queue

This section lists all the functional requirements for a queue-type linear collection.

These requirements will be used as the basis of the architecture descriptions in

shown in Figures5.24, 5.25, and 5.26. A basic queue is augmented with require-

ments for external operator control of availability, as well as concurrency.

As can be seen the requirements between the Stack from Section5.3.1 are

identical except for FR-01, with how resources are removed from the collection.

Basic Queue

The following list details the functional requirements for the Basic Queue. Please

refer to Figure5.24for the Behavior Tree description of this architecture.

FR-01 Resources added to and removed from a queue will follow the process of

“first-in, first-out”.

FR-02 The queue will be able to keep track of the total number of resources cur-

rently in its queue, knowing when it is full or empty. The maximum size of

the queue is a pre-defined constant for the system.

FR-03 The queue must be not full, for a resource producer to be able to put (en-

queue) a new resource to the queue.

FR-04 The queue must be not empty, for a resource consumer to be able to take

(dequeue) a resource from the queue.

FR-05 The queue is initially has no resources, and is able to accept at least one

resource.

Queue with Availability Control

In addition to the requirements specified for the basic queue, these requirements al-

low specific blocking of the addition and removal processes by an external Operator

CHAPTER 5. PROBLEM SOLUTION 122

component. This will allow the queue to be gracefully shutdown when requested,

by first blocking all new resource additions, and when the queue is finally empty,

the queue will then become unavailable.

The following list details the functional requirements for the Queue with Avail-

ability Control. Please refer to Figure5.25for the Behavior Tree description of this

architecture.

FR-06 An Operator must make the queue available before additions and removals

can commence. When the queue is available, the Operator can request that

the queue shutdown; initially halting any new resource additions, and when

the queue is empty, no further removals will be allowed, as the queue be-

comes unavailable.

FR-07 The queue must be available for additions, before any new resources can

be added to the queue.

FR-08 The queue must be available for removals, before any resources can be

removed from the queue.

Queue with Concurrency

In addition to the requirements specified for the basic queue and queue with avail-

ability control, these requirements make the queue’s addition, removal, and control

processes multi-threaded, with mutual exclusion regions. As a demonstration of

availability, this will allow simultaneous additions, and removals by multiple pro-

ducers and consumers.

The following list details the functional requirements for the Concurrent Queue.

Please refer to Figure5.26for the Behavior Tree description of this architecture.

FR-09 To ensure integrity of data, while a resource is actually being added, or

removed, and the queue size is being calculated, no concurrent thread may

interrupt (preempt) this operation.

CHAPTER 5. PROBLEM SOLUTION 123

FR-10 The addition, removal, and operator shutdown processes must be imple-

mented as concurrent threads of operations, for high availability.

CHAPTER 5. PROBLEM SOLUTION 124

B
as

ic
 Q

ue
ue

B
eh

av
io

ur

1,
 2

, 3
Q

U
EU

E
[>

 re
so

ur
ce

 <
 ;

[..
.]*

]

2
Q

U
EU

E
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
Q

U
EU

E
[fu

ll]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
Q

U
EU

E
[N

O
T:

 fu
ll]

1,
 2

, 4
Q

U
EU

E
[[

...
]*;

 <
 re

so
ur

ce
 >

]

2
Q

U
EU

E
[d

ec
re

m
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
Q

UE
UE

?
re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
Q

UE
UE

[e
m

pt
y]

2
Q

UE
UE

?
N

O
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

UE
UE

[N
O

T:
 e

m
pt

y]

3
Q

U
EU

E
?

NO
T

: f
ul

l ?
4

Q
U

EU
E

?
NO

T
: e

m
pt

y ?
3

Q
UE

UE
?

 fu
ll ?

4
Q

U
EU

E
?

 e
m

pt
y ?

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
Q

UE
UE

[a
va

ila
bl

e]

3
PR

O
D

U
C

ER
??

 re
qu

es
te

d-
ad

di
tio

n
??

4
C

O
N

SU
M

ER
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

bl
e]

5
Q

UE
UE

[e
m

pt
y]

5
Q

UE
UE []

5
Q

U
EU

E
[N

O
T

: f
ul

l]

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

3
Q

UE
U

E
<

 fu
ll-

m
es

sa
ge

 >

3
P

R
O

D
U

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

4
Q

U
EU

E
<

 e
m

pt
y-

m
es

sa
ge

 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
Q

UE
UE

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

UE
UE

[fu
ll]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
Q

U
EU

E
[N

O
T:

 fu
ll]

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

bl
e]

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[e

m
pt

y]

2
Q

UE
U

E
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
Q

UE
U

E
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
Q

UE
UE

 ^
[a

va
ila

bl
e]

2
Q

UE
U

E
[N

O
T:

 e
m

pt
y]

2
Q

U
EU

E
[N

O
T:

 fu
ll]

Figure 5.24: Basic Queue Behaviour

CHAPTER 5. PROBLEM SOLUTION 125

1,
 2

, 3
, 7

Q
U

EU
E

[>
 re

so
ur

ce
 <

 ;
[..

.]*
]

2
Q

U
EU

E
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
Q

UE
UE

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

U
EU

E
[fu

ll]

2
Q

UE
UE

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

UE
UE

[N
O

T:
 fu

ll]

1,
 2

, 4
, 8

Q
UE

UE
[[

...
]*;

 <
 re

so
ur

ce
 >

]

2
Q

UE
UE

[d
ec

re
m

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[e

m
pt

y]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
, 6

Q
U

EU
E

[a
va

ila
bl

e]

3
PR

O
D

U
C

ER
??

 re
qu

es
te

d-
ad

di
tio

n
??

4
C

O
N

SU
M

ER
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
ble

]

3,
 4

, 5
, 6

Q
U

EU
E ̂

[a
va

ila
bl

e]
3,

 4
, 5

, 6
Q

UE
UE

 ^
[a

va
ila

bl
e]

5
Q

U
EU

E
[e

m
pt

y]

5
Q

U
EU

E
[]

5
Q

U
EU

E
[N

O
T

: f
ul

l]

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

bl
e]

3
Q

U
EU

E
<

 fu
ll-

m
es

sa
ge

 >

3
PR

O
DU

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

ble
]

4
Q

U
EU

E
<

 e
m

pt
y-

m
es

sa
ge

 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
Q

U
EU

E
[fu

ll]

2
Q

UE
UE

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

UE
UE

[N
O

T:
 fu

ll]

3,
 4

, 5
, 6

Q
U

EU
E ̂

[a
va

ila
bl

e]

3,
 4

, 5
, 6

Q
UE

UE
 ^

[a
va

ila
bl

e]
2

Q
UE

UE
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

UE
UE

[e
m

pt
y]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
bl

e]

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

2
Q

UE
UE

[N
O

T:
 fu

ll]

Q
ue

ue
 w

ith
 A

va
ila

bi
lit

y
C

on
tr

ol

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
un

av
ail

ab
le

 ?
?

6
Q

U
EU

E
[N

O
T:

 a
va

ila
bl

e-
fo

r-a
dd

itio
n]

6
Q

UE
UE

?
em

pt
y ?

6
Q

UE
UE

[N
O

T:
 a

va
ila

bl
e-

fo
r-r

em
ov

al]

6
Q

U
EU

E
?

NO
T

: e
m

pt
y ?

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
ble

]

6
Q

U
EU

E ̂
[N

O
T

: a
va

ila
bl

e]

5,
6

Q
U

EU
E

[N
O

T
: a

va
ila

ble
]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ai
lab

le
??

6
Q

U
EU

E
[a

va
ila

bl
e-

fo
r-a

dd
itio

n]
6

Q
U

EU
E

[a
va

ila
bl

e-
fo

r-r
em

ov
al]

3
Q

U
EU

E
?

N
O

T
: f

ul
l ?

7
Q

U
EU

E
?

av
ai

la
ble

-fo
r-a

dd
itio

n
?

3
Q

U
EU

E
?

 fu
ll ?

7
Q

U
EU

E
?

NO
T

: a
va

ila
bl

e-
fo

r-a
dd

itio
n

?

4
Q

U
EU

E
?

NO
T

: e
m

pt
y ?

8
Q

U
EU

E
?

av
ail

ab
le-

fo
r-r

em
ov

al
 ?

4
Q

UE
UE

?
 fu

ll ?

8
Q

UE
UE

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

Figure 5.25: Queue Behaviour with External Operator Control Augmentation

CHAPTER 5. PROBLEM SOLUTION 126

1,
 2

, 3
, 7

Q
U

EU
E

[>
 re

so
ur

ce
 <

 ;
[..

.]*
]

2
Q

U
EU

E
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
Q

UE
UE

?
re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

U
EU

E
[fu

ll]

2
Q

UE
UE

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

UE
UE

[N
O

T:
 fu

ll]

1,
 2

, 4
, 8

Q
UE

UE
[[

...
]*;

 <
 re

so
ur

ce
 >

]

2
Q

UE
UE

[d
ec

re
m

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[e

m
pt

y]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
, 6

Q
U

EU
E

[a
va

ila
bl

e]

3,
 1

0
PR

O
D

U
C

ER
 ||

??
 re

qu
es

te
d-

ad
di

tio
n

??
4,

 1
0

C
O

N
SU

M
ER

 ||
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
ble

]

3,
 4

, 5
, 6

Q
U

EU
E ̂

[a
va

ila
bl

e]
3,

 4
, 5

, 6
Q

UE
UE

 ^
[a

va
ila

bl
e]

5
Q

U
EU

E
[e

m
pt

y]

5
Q

U
EU

E
[]

5
Q

U
EU

E
[N

O
T

: f
ul

l]

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

bl
e]

3
Q

U
EU

E
<

 fu
ll-

m
es

sa
ge

 >

3
PR

O
DU

C
ER

>
fu

ll-
m

es
sa

ge
 <

3,
 4

, 5
Q

UE
UE

 ̂
[a

va
ila

ble
]

4
Q

U
EU

E
<

 e
m

pt
y-

m
es

sa
ge

 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
Q

U
EU

E
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
Q

U
EU

E
[fu

ll]

2
Q

UE
UE

?
NO

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
Q

UE
UE

[N
O

T:
 fu

ll]

3,
 4

, 5
, 6

Q
U

EU
E ̂

[a
va

ila
bl

e]

3,
 4

, 5
, 6

Q
UE

UE
 ^

[a
va

ila
bl

e]
2

Q
UE

UE
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

UE
UE

[e
m

pt
y]

2
Q

U
EU

E
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
bl

e]

2
Q

U
EU

E
[N

O
T:

 e
m

pt
y]

2
Q

UE
UE

[N
O

T:
 fu

ll]

C
on

cu
rr

en
t Q

ue
ue

6,
 1

0
O

PE
R

AT
O

R
 ||

??
 re

qu
es

te
d-

un
av

ai
lab

le
 ?

?

6
Q

UE
UE

[N
O

T:
 a

va
ila

bl
e-

fo
r-a

dd
itio

n]

6
Q

UE
UE

??
 em

pt
y ?

?

6
Q

UE
UE

[N
O

T:
 a

va
ila

bl
e-

fo
r-r

em
ov

al]

6
Q

U
EU

E
?

NO
T

: e
m

pt
y ?

3,
 4

, 5
, 6

Q
UE

UE
 ̂

[a
va

ila
ble

]

6
Q

U
EU

E ̂
[N

O
T

: a
va

ila
bl

e]

5,
6

Q
U

EU
E

[N
O

T
: a

va
ila

ble
]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ai
lab

le
??

6
Q

U
EU

E
[a

va
ila

bl
e-

fo
r-a

dd
itio

n]
6

Q
U

EU
E

[a
va

ila
bl

e-
fo

r-r
em

ov
al]

3
Q

U
EU

E
?

N
O

T
: f

ul
l ?

7
Q

U
EU

E
?

av
ai

la
ble

-fo
r-a

dd
itio

n
?

3
Q

U
EU

E
?

 fu
ll ?

7
Q

U
EU

E
?

NO
T

: a
va

ila
bl

e-
fo

r-a
dd

itio
n

?

4
Q

U
EU

E
?

NO
T

: e
m

pt
y ?

8
Q

U
EU

E
?

av
ail

ab
le-

fo
r-r

em
ov

al
 ?

4
Q

UE
UE

?
 fu

ll ?

8
Q

UE
UE

?
NO

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

Figure 5.26: Queue Behaviour with Concurrency Augmentation

CHAPTER 5. PROBLEM SOLUTION 127

5.3.3 Set

This section lists all the functional requirements for a set-type unordered collection.

These requirements will be used as the basis of the architecture descriptions in

shown in Figures5.27, 5.28, and 5.29. A basic set is augmented with requirements

for external operator control of availability, as well as concurrency.

As can be seen the requirements between the Stack from Section5.3.1, and

Queue from Section5.3.2, and this Set are identical except for FR-01; with how

resources are added and removed from the collection, and FR-04; the need to spec-

ify the resource to retrieve it.

Basic Set

The following list details the functional requirements for the Basic Set. Please refer

to Figure5.27for the Behavior Tree description of this architecture.

FR-01 Resources can be added or removed from the set in any particular order.

Generally a resource has to be requested by using a unique identifier for it to

be retrieved.

FR-02 The set will be able to keep track of the total number of resources currently

in its set, knowing when it is full or empty. The maximum size of the set is

a pre-defined constant for the system.

FR-03 The set must be not full, for a resource producer to be able to add a new

resource to the set.

FR-04 The set must be not empty, and contain the resource requested for a re-

source consumer to be able to retrieve the resource from the set.

FR-05 The set is initially has no resources, and is able to accept at least one re-

source.

CHAPTER 5. PROBLEM SOLUTION 128

Set with Availability Control

In addition to the requirements specified for the basic set, these requirements allow

specific blocking of the addition and removal processes by an external Operator

component. This will allow the set to be gracefully shutdown when requested, by

first blocking all new resource additions, and when the set is finally empty, the set

will then become unavailable.

The following list details the functional requirements for the Set with Avail-

ability Control. Please refer to Figure5.28 for the Behavior Tree description of

this architecture.

FR-06 An Operator must make the set available before additions and removals can

commence. When the set is available, the Operator can request that the set

shutdown; initially halting any new resource additions, and when the set is

empty, no further removals will be allowed, as the set becomes unavailable.

FR-07 The set must be available for additions, before any new resources can be

added to the set.

FR-08 The set must be available for removals, before any resources can be re-

moved from the set.

5.3.4 Set with Concurrency

In addition to the requirements specified for the basic set and set with availability

control, these requirements make the set’s addition, removal, and control processes

multi-threaded, with mutual exclusion regions. As a demonstration of availability,

this will allow simultaneous additions, and removals by multiple producers and

consumers.

The following list details the functional requirements for the Concurrent Set.

Please refer to Figure5.29for the Behavior Tree description of this architecture.

FR-09 To ensure integrity of data, while a resource is actually being added, or

CHAPTER 5. PROBLEM SOLUTION 129

removed, and the set size is being calculated, no concurrent thread may in-

terrupt (preempt) this operation.

FR-10 The addition, removal, and operator shutdown processes must be imple-

mented as concurrent threads of operations, for high availability.

CHAPTER 5. PROBLEM SOLUTION 130

B
as

ic
 S

et
B

eh
av

io
ur

1,
 2

, 3
SE

T
[>

 re
so

ur
ce

 <
 ,

[..
.]*

]

2
SE

T
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[N

O
T:

 fu
ll]

1,
 2

, 4
SE

T
[<

re
so

ur
ce

>
, [

...
]*]

2
SE

T
[d

ec
re

m
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3
SE

T
?

NO
T

: f
ul

l ?
4

SE
T

?
NO

T
: e

m
pt

y ?
3

SE
T

?
 fu

ll ?

4
SE

T
[N

O
T:

re
so

ur
ce

-id
 ?

 [.
..]

*]
3

PR
O

D
U

C
ER

<
re

so
ur

ce
 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
SE

T
[a

va
ila

bl
e]

3
PR

O
D

U
C

ER
??

 re
qu

es
te

d-
ad

di
tio

n
??

4
C

O
N

SU
M

ER
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

5
SE

T
[e

m
pt

y]

5
SE

T []

5
SE

T
[N

O
T

: f
ul

l]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3
SE

T
<

 fu
ll-

m
es

sa
ge

 >

3
PR

O
D

U
C

ER
>

fu
ll-

m
es

sa
ge

 <

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 n
o-

re
so

ur
ce

-e
rro

r >

4
C

O
N

SU
M

ER
>

no
-re

so
ur

ce
-e

rro
r <

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

NO
T:

 re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[N

O
T:

 fu
ll]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

2
SE

T
[N

O
T:

 e
m

pt
y]

2
SE

T
[N

O
T:

 fu
ll]

4
SE

T
[r

es
ou

rc
e-

id
 ?

 [.
..]

*]

4
SE

T
?

 e
m

pt
y ?

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 e
m

pt
y-

m
es

sa
ge

 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

Figure 5.27: Basic Set Behaviour

CHAPTER 5. PROBLEM SOLUTION 131

1,
 2

, 3
, 7

SE
T

[>
 re

so
ur

ce
 <

 ,
[..

.]*
]

2
SE

T
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
SE

T
[N

O
T:

 fu
ll]

1,
 2

, 4
, 8

SE
T

[<
 re

so
ur

ce
 >

 ,
 [.

..]
*]

2
SE

T
[d

ec
re

m
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
, 6

SE
T

[a
va

ila
bl

e]

3
PR

O
D

U
C

ER
??

 re
qu

es
te

d-
ad

di
tio

n
??

4
C

O
N

SU
M

ER
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

3,
 4

, 5
, 6

SE
T ̂

[a
va

ila
bl

e]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

5
SE

T
[e

m
pt

y]

5
SE

T []

5
SE

T
[N

O
T

: f
ul

l]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3
SE

T
<

 fu
ll-

m
es

sa
ge

 >

3
PR

O
D

U
C

ER
>

fu
ll-

m
es

sa
ge

 <

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 e
m

pt
y-

m
es

sa
ge

 >

4
C

O
N

SU
M

ER
>

em
pt

y-
m

es
sa

ge
 <

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
SE

T
[N

O
T:

 fu
ll]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

2
SE

T
[N

O
T:

 e
m

pt
y]

2
SE

T
[N

O
T:

 fu
ll]

Se
t w

ith
 A

va
ila

bi
lit

y
C

on
tr

ol

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
un

av
ai

la
bl

e
??

6
SE

T
[N

O
T:

 a
va

ila
bl

e-
fo

r-a
dd

iti
on

]

6
SE

T
?

em
pt

y ?

6
SE

T
[N

O
T:

 a
va

ila
bl

e-
fo

r-r
em

ov
al

]

6
SE

T
?

NO
T

: e
m

pt
y ?

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

6
SE

T ̂
[N

O
T

: a
va

ila
bl

e]

5,
 6

SE
T

[N
O

T
: a

va
ila

bl
e]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ail
ab

le
 ?

?

6
SE

T
[a

va
ila

bl
e-

fo
r-a

dd
iti

on
]

6
SE

T
[a

va
ila

bl
e-

fo
r-r

em
ov

al
]

3
SE

T
?

NO
T

: f
ul

l ?

7
SE

T
?

av
ai

la
bl

e-
fo

r-a
dd

itio
n

?

3
SE

T
?

 fu
ll ?

7
SE

T
?

N
O

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

4
SE

T
?

NO
T

: e
m

pt
y ?

8
SE

T
?

av
ai

la
bl

e-
fo

r-r
em

ov
al

 ?

4
SE

T
?

 fu
ll ?

8
SE

T
?

N
O

T
: a

va
ila

bl
e-

fo
r-a

dd
iti

on
 ?

4
SE

T
[N

O
T:

re
so

ur
ce

-id
 ?

 [.
..]

*]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 n
o-

re
so

ur
ce

-e
rro

r >

4
C

O
N

SU
M

ER
>

no
-re

so
ur

ce
-e

rr
or

 <

4
SE

T
[r

es
ou

rc
e-

id
 ?

 [.
..]

*]

Figure 5.28: Set Behaviour with External Operator Control Augmentation

CHAPTER 5. PROBLEM SOLUTION 132

1,
 2

, 3
, 7

SE
T

[>
 re

so
ur

ce
 <

 ,
 [.

..]
*]

2
SE

T
[in

cr
em

en
te

d-
re

so
ur

ce
s-

to
ta

l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
SE

T
[N

O
T:

 fu
ll]

1,
 2

, 4
, 8

SE
T

[<
 re

so
ur

ce
 >

 ,
[..

.]*
,]

2
SE

T
[d

ec
re

m
en

te
d-

re
so

ur
ce

s-
to

ta
l]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3
PR

O
D

U
C

ER
<

re
so

ur
ce

 >

4
C

O
N

SU
M

ER
>

re
so

ur
ce

 <

3,
 4

, 5
, 6

SE
T

[a
va

ila
bl

e]

3,
 1

0
P

R
O

D
U

C
E

R
 ||

??
 re

qu
es

te
d-

ad
di

tio
n

??
4,

 1
0

C
O

N
S

U
M

E
R

 ||
??

 re
qu

es
te

d-
re

so
ur

ce
 ?

?

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

3,
 4

, 5
, 6

SE
T ̂

[a
va

ila
bl

e]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

5
SE

T
[e

m
pt

y]

5
SE

T []

5
SE

T
[N

O
T

: f
ul

l]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

3
SE

T
<

 fu
ll-

m
es

sa
ge

 >

3
C

O
N

SU
M

ER
>

fu
ll-

m
es

sa
ge

 <

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 e
m

pt
y-

m
es

sa
ge

 >

4
PR

O
D

U
C

ER
>

em
pt

y-
m

es
sa

ge
 <

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 m
ax

 ?

2
SE

T
[fu

ll]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 m

ax
 ?

2
SE

T
[N

O
T:

 fu
ll]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

2
SE

T
?

re
so

ur
ce

s-
to

ta
l =

 0
 ?

2
SE

T
[e

m
pt

y]

2
SE

T
?

N
O

T:
 re

so
ur

ce
s-

to
ta

l =
 0

 ?

2
SE

T
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

2
SE

T
[N

O
T:

 e
m

pt
y]

2
SE

T
[N

O
T:

 fu
ll]

C
on

cu
rr

en
t S

et

6,
 1

0
O

PE
R

A
TO

R
 ||

??
 re

qu
es

te
d-

un
av

ail
ab

le
 ?

?

6
SE

T
[N

O
T:

 a
va

ila
bl

e-
fo

r-a
dd

itio
n]

6
SE

T
??

 em
pt

y ?
?

6
SE

T
[N

O
T:

 a
va

ila
bl

e-
fo

r-r
em

ov
al

]

6
SE

T
?

NO
T

: e
m

pt
y ?

3,
 4

, 5
, 6

SE
T

^
[a

va
ila

bl
e]

6
SE

T ̂
[N

O
T

: a
va

ila
bl

e]

5,
 6

SE
T

[N
O

T
: a

va
ila

bl
e]

6
O

PE
R

AT
O

R
??

 re
qu

es
te

d-
av

ail
ab

le
 ?

?

6
SE

T
[a

va
ila

bl
e-

fo
r-a

dd
iti

on
]

6
SE

T
[a

va
ila

bl
e-

fo
r-r

em
ov

al
]

3
SE

T
?

NO
T

: f
ul

l ?

7
SE

T
?

av
ai

la
bl

e-
fo

r-a
dd

itio
n

?

3
SE

T
?

 fu
ll ?

7
SE

T
?

N
O

T
: a

va
ila

bl
e-

fo
r-a

dd
itio

n
?

4
SE

T
?

NO
T

: e
m

pt
y ?

8
SE

T
?

av
ai

la
bl

e-
fo

r-r
em

ov
al

 ?

4
SE

T
?

 fu
ll ?

8
SE

T
?

N
O

T
: a

va
ila

bl
e-

fo
r-a

dd
iti

on
 ?

4
SE

T
[N

O
T:

re
so

ur
ce

-id
 ?

 [.
..]

*]

3,
 4

, 5
SE

T
^

[a
va

ila
bl

e]

4
SE

T
<

 n
o-

re
so

ur
ce

-e
rro

r >

4
C

O
N

SU
M

ER
>

no
-re

so
ur

ce
-e

rr
or

 <

4
SE

T
[r

es
ou

rc
e-

id
 ?

 [.
..]

*]

Figure 5.29: Set Behaviour with Concurrency Augmentation

CHAPTER 5. PROBLEM SOLUTION 133

5.3.5 Collection

This section describes a generic collection component that combines the properties

of a Stack (Section5.3.1), Queue (Section5.3.2), and Set (Section5.3.3).

Addition of a Resource to a Collection

3, 9 COLLECTION
? NOT : full ?

3, 7, 9 PRODUCER
< resource >

1, 2, 3, 7,
9

COLLECTION
[> resource < , [...]*]

COLLECTION
? initialised-as-Stack ?

COLLECTION
? initialised-as-Set ?

COLLECTION
? initialised-as-Queue ?

1, 2, 3, 7,
9

COLLECTION
[> resource < ; [...]*]

Figure 5.30: Modification of Addition Process to allow for Different Collection

Types

By augmenting and comparing the requirements of each of these collection

types, a number of conclusions were found.

1. The name of the system; Stack, Queue, Set, or Collection, was the first mod-

ification of the system to adapt to the different sets of requirements.

2. Only the corresponding first requirement of each collection type differed.

i.e. how a queue, stack, or set actually stores and retrieves its resources. For

the Collection, this functional requirement is rewritten as:

[FR-01] Resources added to and removed from a collection will follow the

process of “first-in, first-out”, “first-in, last-out”, or requested by using a

CHAPTER 5. PROBLEM SOLUTION 134

1, 2, 4, 8,
9

COLLECTION
[< resource > ; [...]*]

4, 9 COLLECTION
? NOT : empty ?

4, 8, 9 CONSUMER
> resource <

COLLECTION
? initialised-as-Stack ?

COLLECTION
? initialised-as-Queue ?

COLLECTION
? initialised-as-Set ?

1, 2, 4, 8,
9

COLLECTION
[[...]* ; <resource>]

1, 2, 4, 8,
9

COLLECTION
[< resource > , [...]*]

Retrieval of a Resource from a Collection

Figure 5.31: Modification of Retrieval Process to allow for Different Collection

Types

unique identifier, depending on how the collection is initialised.

This is implemented by added selected flow to the Behavior Tree specifying

what addition or retrieval is required by the Collection. See Figures5.30

and 5.31. This benefits the Reusability of the component at the cost of

complexity for the overall Behavior Tree and possibly a performance hit at

implementation level.

3. Adding an Operator control process to the system, required additional be-

haviour in the initialisation sequence and a new control branch for detecting

shut-down requests at the same time as additions and retrievals are processed.

4. Adding concurrency to processes is a matter of adding the parallel process

operator to the top of each process. Behaviour that related directly to the

addition and retrieval of resources, must be mutually exclusive, to other be-

haviour. i.e. a process in a critical region should not be preempted before it

is finished its operations. This is added to the Behavior Tree by changing the

CHAPTER 5. PROBLEM SOLUTION 135

Control Flow arrows to Tight Control Flow double arrows, where required.

To originally maintain linear flow of control through the system, the operator

process had to loop back to allow additions and retrievals, before rechecking

if the stack was now empty. This was made redundant by using concurrency,

where the process could merely be blocked and wait for other processes to

finish.

From SectionC, adapting the component implementation for concurrency,

was be more complex than the architectural modification. Specifically in

Java, methods have to be added or changed to use Threads. Overall, by

following Sun’s current best practice, the architectural model was still es-

sentially valid.

5. Implementation of the Generic Collection component could proceed in two

directions:

(a) Each version of the collection type and augmentation could be pack-

aged into the one component, allowing the developer to choose the

optimised version that suits their requirements. This is much like the

libraries or APIs that are used regularly by programmers in industry

today.

(b) One system could be implemented containing all the collection types,

and augmentations. The cost to the system would be Efficiency, but

Reusability (Adaptability) would benefit. This could allow a compo-

nent to change its internal collection storage type at runtime, not just

compile-time.

CHAPTER 5. PROBLEM SOLUTION 136

5.4 Component Adaptation Example

This case study will investigate two real-world allocation systems from an adapta-

tion perspective. The Hospital Bed Allocation System handles the registration and

allocation of beds to patients. The requirements and derived architecture for this

system is shown in Section5.4.1. The Carpark System allows for cars to enter,

park in a space, and leave an automated car park. Its requirements and architecture

are given in Section5.4.2.

The primary objective for this case study is to compare analogous behaviour

between two systems. If the overall functionality of two systems are perceived to

be the similar, what specifically is different? If the Behavior Tree methodology

tends to produce a similar implementation regardless of the designer, how can two

trees differ, and yet produce the same functionality?

Figure5.32displays how the two systems will be compared. First of all, re-

quirements will be aligned as much as possible. The Behavior Trees for both sys-

tems will then be compared for similarities, such as overall processes. By then

using processes of renaming, projection and transformation (Figure5.33) between

the two trees, the intended behaviour of each system can be examined from a dif-

ferent perspective. i.e. If the Carpark system is transformed into a Hospital system,

is it a valid Hospital system? How does this differ from the real, original Hospital

system?

After this work is reviewed, a generic allocation system will be developed,

including components from the Component Development Section5.3. How easily

can the collection component be adapted for use in an allocation system?

Finally, ways of identifying quality attributes within Behavior Trees will be

demonstrated. By taking the basic functionality of a system, and adapting it to

handle unknown behavior, security and reliability can be built into the system.

Performance and efficiency can be added with concurrent processes.

CHAPTER 5. PROBLEM SOLUTION 137

System
Requirements Individual

Requirement
Behaviour

Overall
Component
Behaviour

0101000
1100121
2121212

Component
Implementation

Hospital Bed Allocation System

System
Requirements Individual

Requirement
Behaviour

Overall
Component
Behaviour

1000001
2110000
011112

Component
Implementation

Carpark Space Allocation System

Figure 5.32: Analogous Behaviour

CHAPTER 5. PROBLEM SOLUTION 138

A

B

C
Generic

generate
project out

A

B

C

project out
C

extrapolate to

1. Derive Complex Behaviour from Simple Behaviour

2. Derive Simple Behaviour from Complex Behaviour

3. Derive a Specific Behaviour from Generalised Behaviour

Figure 5.33: Component Architecture Re-Engineering

CHAPTER 5. PROBLEM SOLUTION 139

5.4.1 Hospital Bed Allocation System

Requirements

This section lists all the functional requirements for a Hospital bed allocation sys-

tem. This system requires that a patient be registered before they are admitted, and

cleared-for-departure before checking out.

FR-01 Patients can be admitted to and depart from the Hospital system in any order,

but must queue to access individual services.

FR-02 The Hospital keeps a patient database, keeping track of status on registra-

tion, admission, bed allocation, and departure clearance. There is a known

number of total beds available in the Hospital.

FR-03 A patient can be registered, but not admitted, until a bed suitable for their

priority level is available for allocation.

FR-04 A patient cannot check-out from the hospital unless they are actually regis-

tered there first. If they have been admitted, they must get prior clearance,

before checking-out.

FR-05 A Hospital can be closed for maintenance purposes. When closed no patient

details can be processed. The hospital system should have its admission and

bed allocation records re-validated before reopening.

Architecture

Figure5.34represents the architecture of the system derived from the requirements

given in Section5.4.1. Figure5.38shows another version of a Hospital Allocation

System transformed from the Carpark Allocation System. The comparison results

between these two systems will be provided in Section5.4.3.

CHAPTER 5. PROBLEM SOLUTION 140

3
PA

TI
EN

T
??

 re
qu

es
te

d-
ad

m
iss

io
n

??

2,
 4

H
O

SP
IT

AL
[p

at
ien

t-d
et

ail
s-

re
ev

alu
at

ed
]

5
AD

M
IN

??
 c

los
ed

-h
os

pi
ta

l ?
?

5
AD

M
IN

??
 o

pe
ne

d-
ho

sp
ita

l ?
?

5
HO

SP
IT

AL
[c

los
ed

]

1,
 3

, 4
, 5

H
O

SP
IT

AL
[o

pe
n]

2,
3

PA
TI

EN
T

?
ac

ce
pt

ed
-fo

r-r
eg

ist
ra

tio
n

?

2,
 3

HO
SP

IT
AL

[p
at

ie
nt

-re
gi

st
er

ed
]

2,
3

PA
TI

EN
T

?
N

O
T

: a
cc

ep
te

d-
fo

r-r
eg

ist
ra

tio
n

?
1,

 3
, 4

, 5
H

O
SP

IT
AL

 ̂
[o

pe
n]

1,
 3

, 4
, 5

H
O

SP
IT

AL
 ̂

[o
pe

n]
1,

 3
, 4

, 5
HO

SP
IT

AL
 ̂

[o
pe

n]

1,
 3

, 4
, 5

HO
SP

IT
AL

 ̂
[o

pe
n]

1,
 3

, 4
, 5

HO
SP

IT
AL

 ^
[o

pe
n]

H
os

pi
ta

l B
ed

 A
llo

ca
tio

n
B

eh
av

io
ur

1,
 3

, 4
, 5

HO
SP

IT
AL

 ̂
[o

pe
n]

5
HO

SP
IT

AL
 ^

[c
lo

se
d]

5
HO

SP
IT

AL
[]

5
H

O
SP

IT
AL

??
 p

ro
bl

em
s-

re
so

lve
d

??

5
H

O
SP

IT
AL

[b
ed

-li
st

-in
itia

lis
ed

-a
nd

-re
st

or
ed

]
5

HO
SP

IT
AL

[p
at

ie
nt

-li
st

-in
itia

lis
ed

-&
-re

st
or

ed
]

2,
 3

H
O

SP
IT

AL
?

pa
tie

nt
-re

gi
st

er
ed

 ?

2,
 3

HO
SP

IT
AL

[re
tri

ev
ed

-p
at

ie
nt

-p
rio

rit
y]

2,
 3

H
O

SP
IT

AL
?

ha
s-

av
ai

lab
le-

be
d-

fo
r-p

rio
rit

y
?

2,
 3

HO
SP

IT
AL

[p
at

ien
t-d

et
ail

s-
up

da
te

d]
2,

3
H

O
SP

IT
AL

[a
va

ila
bl

e-
be

ds
-d

ec
re

m
en

te
d]

2,
3

PA
TI

EN
T

[a
dm

itt
ed

]

2,
 3

HO
SP

IT
AL

?
N

O
T:

 p
at

ie
nt

-re
gi

st
er

ed
 ?

2,
 3

HO
SP

IT
AL

[p
at

ien
t-p

rio
rit

y-
cr

ea
te

d]

3
PA

TI
EN

T ̂
??

 re
qu

es
te

d-
ad

m
iss

io
n

??

2,
 3

H
O

SP
IT

AL
?

N
O

T
: h

as
-a

va
ila

bl
e-

be
d

?

2,
3

PA
TI

EN
T

[d
en

ied
-a

dm
iss

ion
]

2,
4

H
O

SP
IT

AL
?

pa
tie

nt
-re

gi
st

er
ed

 ?
2,

4
H

O
SP

IT
AL

?
N

O
T

: p
at

ie
nt

-re
gi

st
er

ed
 ?

2,
 4

H
O

SP
IT

AL
[re

tri
ev

ed
-p

at
ien

t-s
ta

tu
s]

2,
 4

H
O

SP
IT

AL
?

pa
tie

nt
-c

le
ar

ed
-fo

r-d
ep

ar
tu

re
 ?

2,
 4

HO
SP

IT
AL

[b
ed

-d
ea

llo
ca

te
d]

2,
 4

H
O

SP
IT

AL
[a

va
ila

bl
e-

be
ds

-in
cr

em
en

te
d]

2,
 4

H
O

SP
IT

AL
[p

at
ien

t-d
et

ail
s-

up
da

te
d]

2,
 4

H
O

SP
IT

AL
?

NO
T

: p
at

ien
t-c

le
ar

ed
 ?

2,
 4

PA
TI

EN
T

[c
he

ck
ed

-o
ut

]
2,

 4
PA

TI
EN

T
[d

en
ied

-d
ep

ar
tu

re
]

2,
 4

PA
TI

EN
T

[d
en

ie
d-

de
pa

rtu
re

]

2,
4

PA
TI

EN
T

??
 re

qu
es

te
d-

de
pa

rtu
re

 ?
?

Figure 5.34: Hospital Bed Allocation Behaviour derived from the original require-

ments

CHAPTER 5. PROBLEM SOLUTION 141

3 PATIENT
?? requested-admission ??5 ADMIN

?? closed-hospital ??

5 ADMIN
?? opened-hospital ??

5 HOSPITAL
[closed]

1, 3, 4, 5 HOSPITAL
[open]

5 HOSPITAL
[]

5 HOSPITAL
?? problems-resolved ??

5 HOSPITAL
[bed-list-initialised-and-restored] 5 HOSPITAL

[patient-list-initialised-&-restored]

2, 4 PATIENT
?? requested-departure ??

Figure 5.35: Hospital Bed Allocation Initiation Process

3 PATIENT
?? requested-admission ??5 ADMIN

?? closed-hospital ??

2, 3 PATIENT
? accepted-for-registration ?

2, 3 HOSPITAL
[patient-registered]

2, 3 PATIENT
? NOT : accepted-for-registration ?

1, 3, 4, 5 HOSPITAL ̂
[open] 1, 3, 4, 5 HOSPITAL ^

[open]

1, 3, 4, 5 HOSPITAL ̂
[open]

5 HOSPITAL ^
[closed] 2, 3 HOSPITAL

? patient-registered ?

2, 3 HOSPITAL
[retrieved-patient-priority]

2, 3 HOSPITAL
? has-available-bed-for-priority ?

2, 3 HOSPITAL
[patient-details-updated]2, 3 HOSPITAL

[available-beds-decremented] 2, 3 PATIENT
[admitted]

2, 3 HOSPITAL
? NOT: patient-registered ?

2, 3 HOSPITAL
[patient-priority-created]

3 PATIENT ̂
?? requested-admission ??

2, 3 HOSPITAL
? NOT : has-available-bed ?

2, 3 PATIENT
[denied-admission]

Figure 5.36: Hospital Bed Allocation Admission Process

CHAPTER 5. PROBLEM SOLUTION 142

2, 4 HOSPITAL
[patient-details-reevaluated]

1, 3, 4, 5 HOSPITAL ̂
[open]

1, 3, 4, 5 HOSPITAL ̂
[open]1, 3, 4, 5 HOSPITAL ̂

[open]

2, 4 HOSPITAL
? patient-registered ? 2, 4 HOSPITAL

? NOT : patient-registered ?

2, 4 HOSPITAL
[retrieved-patient-status]

2, 4 HOSPITAL
? patient-cleared-for-departure ?

2, 4 HOSPITAL
[bed-deallocated] 2, 4 HOSPITAL

[available-beds-incremented] 2, 4 HOSPITAL
[patient-details-updated]

2, 4 HOSPITAL
? NOT : patient-cleared ?

2, 4 PATIENT
[checked-out] 2, 4 PATIENT

[denied-departure]

2, 4 PATIENT
[denied-departure]

2, 4 PATIENT
?? requested-departure ??

Figure 5.37: Hospital Bed Allocation Departure Process

CHAPTER 5. PROBLEM SOLUTION 143

2, 3 PATIENT ||
?? requested-registration ??

2, 3 ADMISSIONS
? < registration > ?

3 PATIENT
?? > registration < ??

3 ADMISSION-DESK
[finished-with-patient]

3 PATIENT
?? left-admission-desk ??

5 ADMISSIONS
? NOT : < registration > ?

2, 4 PATIENT ||
?? < registration > ??

2, 4 DEPARTURES
> registration <

4 PATIENT
? < payment-in-full > ?

2, 4 DEPARTURES
> payment-in-full <

4 DEPARTURE-DESK
[finished-with-patient]

4 PATIENT
?? left-departure-desk ??

5 DEPARTURES
? NOT : validated-registration ?

5 PATIENT
? NOT : < payment-in-full > ?

5 ADMIN ||
?? requested-hospital-to-close ??

5 HOSPITAL
[closed]

1, 3, 4, 5 HOSPITAL
[open]

5 HOSPITAL ̂
[closed]

5 HOSPITAL ̂
[]

1, 3, 4, 5 HOSPITAL ̂
[open]

Hospital from Carpark Allocation Behaviour

4 DEPARTURES
? validated-registration ?

1, 3, 4, 5 HOSPITAL ̂
[open]

3 ADMISSION-DESK
[available-for-next-patient]

1, 3, 4, 5 HOSPITAL ̂
[open]

4 DEPARTURE-DESK
[available-for-next-patient]

5 HOSPITAL ̂
[]

5 HOSPITAL ̂
[]

5 ADMIN
?? requested-hospital-to-open ??

5 ADMISSION-DESK
[available-for-next-patient] 5 DEPARTURE-DESK

[available-for-next-patient] 5 HOSPITAL
[free-beds-reset]

5 HOSPITAL
?? problems-maintained ??

2, 3 HOSPITAL
? has-free-bed ?

2, 3 HOSPITAL
[free-beds-decremented]

2, 3 HOSPITAL
? NOT : has-free-bed ?

2, 4 HOSPITAL
[free-beds-incremented]

5 HOSPITAL
[]

Figure 5.38: Hospital Bed Allocation Behaviour derived from the Carpark Alloca-

tion System requirements

CHAPTER 5. PROBLEM SOLUTION 144

2, 3 PATIENT ||
?? requested-registration ?? 2, 4 PATIENT ||

?? < registration > ??5 ADMIN ||
?? requested-hospital-to-close ??

5 HOSPITAL
[closed]

1, 3, 4, 5 HOSPITAL
[open]

5 ADMIN
?? requested-hospital-to-open ??

5 ADMISSION-DESK
[available-for-next-patient] 5 DEPARTURE-DESK

[available-for-next-patient] 5 HOSPITAL
[free-beds-reset]

5 HOSPITAL
?? problems-maintained ??

5 HOSPITAL
[]

Figure 5.39: Hospital Bed Allocation Initiation Process

CHAPTER 5. PROBLEM SOLUTION 145

2, 3 PATIENT ||
?? requested-registration ??

2, 3 ADMISSIONS
? < registration > ?

3 PATIENT
?? > registration < ??

3 ADMISSION-DESK
[finished-with-patient]

3 PATIENT
?? left-admission-desk ??

5 ADMISSIONS
? NOT : < registration > ?

5 HOSPITAL ̂
[]

1, 3, 4, 5 HOSPITAL ̂
[open]

1, 3, 4, 5 HOSPITAL ̂
[open]

3 ADMISSION-DESK
[available-for-next-patient]

2, 3 HOSPITAL
? has-free-bed ?

2, 3 HOSPITAL
[free-beds-decremented]

2, 3 HOSPITAL
? NOT : has-free-bed ?

Figure 5.40: Hospital Bed Allocation Admission Process

CHAPTER 5. PROBLEM SOLUTION 146

2, 4 PATIENT ||
?? < registration > ??

2, 4 DEPARTURES
> registration <

4 PATIENT
? < payment-in-full > ?

2, 4 DEPARTURES
> payment-in-full <

4 DEPARTURE-DESK
[finished-with-patient]

4 PATIENT
?? left-departure-desk ??

5 DEPARTURES
? NOT : validated-registration ?

5 PATIENT
? NOT : < payment-in-full > ?

4 DEPARTURES
? validated-registration ?

1, 3, 4, 5 HOSPITAL ̂
[open]

4 DEPARTURE-DESK
[available-for-next-patient]

5 HOSPITAL ̂
[]

5 HOSPITAL ̂
[]

2, 4 HOSPITAL
[free-beds-incremented]

Figure 5.41: Hospital Bed Allocation Departure Process

CHAPTER 5. PROBLEM SOLUTION 147

5.4.2 Carpark Space Allocation System

Requirements

This section lists all the functional requirements for a Carpark space allocation

system. There is some specific requirements dealing with the automatic entry and

exit systems, with ticket vending and boomgates.

FR-01 Cars must queue up to actually enter and leave the Carpark but generally can

leave at their own convenience.

FR-02 The Carpark system keeps track of how many spaces are available and cur-

rently used at all times.

FR-03 When a new Car approaches a Carpark entry point, if the Carpark is not full,

the driver can press a button requesting a ticket from the Ticket Allocator.

When the driver takes the ticket, total number of carspaces are deallocated,

the entry boomgate will raise and wait for the Car to pass before lowering,

and waiting for another Car’s request.

FR-04 When a Car wishes to leave the Carpark, the driver must present the ticket to

the Ticket Collector. If the ticket is valid, and the driver provides payment-

in-full for the time spent in the Carpark, the exit boomgate will rise, the Car

will leave, the boomgate will lower, the total number of available carspaces

will be incremented and the next request can be processed.

FR-05 Should the automatic nature of the Carpark system fail, the Carpark should

close and be maintained before reopening.

Architecture

Figure5.42represents the architecture of the system derived from the requirements

given in Section5.4.2. Figure5.46shows another version of a Carpark Allocation

System transformed from the Hospital Allocation System. The comparison results

between these two systems will be provided in Section5.4.3.

CHAPTER 5. PROBLEM SOLUTION 148

2, 3 CAR ||
?? requested-ticket ??

2, 3 TICKET-ALLOCATOR
? < ticket > ?

3 CAR
?? > ticket < ??

3 ENTRY-BOOMGATE
[up]

3 CAR
?? passed-entry-boomgate ??

5 TICKET-ALLOCATOR
? NOT : < ticket > ?

2, 4 CAR ||
?? < ticket > ??

2, 4 TICKET-COLLECTOR
> ticket <

4 CAR
? < payment-in-full > ?

2, 4 TICKET-COLLECTOR
> payment-in-full <

4 EXIT-BOOMGATE
[up]

4 CAR
?? passed-exit-boomgate ??

5 TICKET-COLLECTOR
? NOT : validated-ticket ?

5 CAR
? NOT : < payment-in-full > ?

5 OPERATOR ||
?? requested-carpark-to-close ??

5 CARPARK
[closed]

1, 3, 4, 5 CARPARK
[open]

5 CARPARK ̂
[closed]

5 CARPARK ̂
[]

1, 3, 4, 5 CARPARK ̂
[open]

Carpark Allocation Behaviour

4 TICKET-COLLECTOR
? validated-ticket ?

1, 3, 4, 5 CARPARK ̂
[open]

3 ENTRY-BOOMGATE
[down]

1, 3, 4, 5 CARPARK ̂
[open]

4 EXIT-BOOMGATE
[down]

5 CARPARK ̂
[]

5 CARPARK ̂
[]

5 OPERATOR
?? requested-carpark-to-open ??

5 ENTRY-BOOMGATE
[down] 5 EXIT-BOOMGATE

[down] 5 CARPARK
[free-spaces-reset]

5 CARPARK
?? problems-maintained ??

2, 3 CARPARK
? has-free-space ?

2, 3 CARPARK
[free-spaces-decremented]

2, 3 CARPARK
? NOT : has-free-space ?

2, 4 CARPARK
[free-space-incremented]

5 CARPARK
[]

Figure 5.42: Car Space Allocation Behaviour derived from the original require-

ments

CHAPTER 5. PROBLEM SOLUTION 149

2, 3 CAR ||
?? requested-ticket ??

2, 3 TICKET-ALLOCATOR
? < ticket > ?

3 CAR
?? > ticket < ??

3 ENTRY-BOOMGATE
[up]

3 CAR
?? passed-entry-boomgate ??

5 TICKET-ALLOCATOR
? NOT : < ticket > ?

2, 4 CAR ||
?? < ticket > ??

2, 4 TICKET-COLLECTOR
> ticket <

4 CAR
? < payment-in-full > ?

2, 4 TICKET-COLLECTOR
> payment-in-full <

4 EXIT-BOOMGATE
[up]

4 CAR
?? passed-exit-boomgate ??

5 TICKET-COLLECTOR
? NOT : validated-ticket ?

5 CAR
? NOT : < payment-in-full > ?

5 OPERATOR ||
?? requested-carpark-to-close ??

5 CARPARK
[closed]

1, 3, 4, 5 CARPARK
[open]

5 CARPARK ̂
[closed]

5 CARPARK ̂
[]

1, 3, 4, 5 CARPARK ̂
[open]

Carpark Allocation Behaviour

4 TICKET-COLLECTOR
? validated-ticket ?

1, 3, 4, 5 CARPARK ̂
[open]

3 ENTRY-BOOMGATE
[down]

1, 3, 4, 5 CARPARK ̂
[open]

4 EXIT-BOOMGATE
[down]

5 CARPARK ̂
[]

5 CARPARK ̂
[]

5 OPERATOR
?? requested-carpark-to-open ??

5 ENTRY-BOOMGATE
[down] 5 EXIT-BOOMGATE

[down] 5 CARPARK
[free-spaces-reset]

5 CARPARK
?? problems-maintained ??

2, 3 CARPARK
? has-free-space ?

2, 3 CARPARK
[free-spaces-decremented]

2, 3 CARPARK
? NOT : has-free-space ?

2, 4 CARPARK
[free-space-incremented]

5 CARPARK
[]

Figure 5.43: Car Space Allocation Initiation Process

CHAPTER 5. PROBLEM SOLUTION 150

2, 3 CAR ||
?? requested-ticket ??

2, 3 TICKET-ALLOCATOR
? < ticket > ?

3 CAR
?? > ticket < ??

3 ENTRY-BOOMGATE
[up]

3 CAR
?? passed-entry-boomgate ??

5 TICKET-ALLOCATOR
? NOT : < ticket > ?

5 OPERATOR ||
?? requested-carpark-to-close ??

5 CARPARK ̂
[closed]

5 CARPARK ̂
[]

1, 3, 4, 5 CARPARK ̂
[open]

1, 3, 4, 5 CARPARK ̂
[open]

3 ENTRY-BOOMGATE
[down]

2, 3 CARPARK
? has-free-space ?

2, 3 CARPARK
[free-spaces-decremented]

2, 3 CARPARK
? NOT : has-free-space ?

Figure 5.44: Car Space Allocation Entry Process

CHAPTER 5. PROBLEM SOLUTION 151

2, 4 CAR ||
?? < ticket > ??

2, 4 TICKET-COLLECTOR
> ticket <

4 CAR
? < payment-in-full > ?

2, 4 TICKET-COLLECTOR
> payment-in-full <

4 EXIT-BOOMGATE
[up]

4 CAR
?? passed-exit-boomgate ??

5 TICKET-COLLECTOR
? NOT : validated-ticket ?

5 CAR
? NOT : < payment-in-full > ?

4 TICKET-COLLECTOR
? validated-ticket ?

1, 3, 4, 5 CARPARK ̂
[open]

4 EXIT-BOOMGATE
[down]

5 CARPARK ̂
[]

5 CARPARK ̂
[]

2, 4 CARPARK
[free-space-incremented]

Figure 5.45: Car Space Allocation Exit Process

CHAPTER 5. PROBLEM SOLUTION 152

3
C

AR
??

 a
pp

ro
ac

he
d-

en
tra

nc
e

??

2,
 4

C
AR

PA
RK

[c
ar

-d
et

ail
s-

re
ev

alu
at

ed
]

5
O

PE
R

AT
O

R
??

 c
lo

se
d-

ca
rp

ar
k

??

5
O

PE
R

AT
O

R
??

 o
pe

ne
d-

ca
rp

ar
k

??

5
CA

R
PA

RK
[c

los
ed

]

1,
 3

, 4
, 5

C
AR

PA
RK

[o
pe

n]

2,
3

C
AR

?
ac

ce
pt

ed
-fo

r-r
eg

ist
ra

tio
n

?

2,
 3

CA
R

PA
RK

[c
ar

-h
as

-ti
ck

et
]

2,
3

C
AR

?
N

O
T

: a
cc

ep
te

d-
fo

r-r
eg

ist
ra

tio
n

?
1,

 3
, 4

, 5
C

AR
PA

R
K

^
[o

pe
n]

1,
 3

, 4
, 5

C
AR

PA
R

K
^

[o
pe

n]
1,

 3
, 4

, 5
C

AR
PA

RK
 ̂

[o
pe

n]

1,
 3

, 4
, 5

C
AR

PA
RK

 ̂
[o

pe
n]

1,
 3

, 4
, 5

C
AR

PA
RK

 ^
[o

pe
n]

C
ar

pa
rk

 fr
om

 H
os

pi
ta

l B
ed

 A
llo

ca
tio

n
B

eh
av

io
ur

1,
 3

, 4
, 5

C
AR

PA
RK

 ^
[o

pe
n]

5
C

AR
PA

RK
 ̂

[c
los

ed
]

5
CA

R
PA

RK
[]

5
C

AR
PA

RK
??

 p
ro

bl
em

s-
re

so
lve

d
??

5
C

AR
PA

RK
[s

pa
ce

-li
st

-in
iti

al
is

ed
-a

nd
-r

es
to

re
d]

5
CA

R
PA

RK
[c

ar
-li

st
-in

itia
lis

ed
-&

-re
st

or
ed

]

2,
 3

C
AR

PA
RK

?
ca

r-h
as

-ti
ck

et
 ?

2,
 3

CA
R

PA
RK

[re
tri

ev
ed

-c
ar

-p
rio

rit
y]

2,
 3

C
AR

PA
RK

?
ha

s-
av

ail
.-s

pa
ce

-fo
r-p

rio
rit

y
?

2,
 3

CA
R

PA
RK

[c
ar

-d
et

ail
s-

up
da

te
d]

2,
 3

CA
R

PA
RK

[a
va

ila
bl

e-
sp

ac
es

-d
ec

re
m

en
te

d]
2,

3
C

AR
[e

nt
er

ed
]

2,
 3

CA
R

PA
RK

?
NO

T:
 c

ar
-h

as
-ti

ck
et

 ?

2,
 3

CA
R

PA
RK

[c
ar

-p
rio

rit
y-

cr
ea

te
d]

3
CA

R ̂
??

 re
qu

es
te

d-
ad

m
iss

io
n

??

2,
 3

C
AR

PA
RK

?
NO

T
: h

as
-a

va
ila

bl
e-

sp
ac

e
?

2,
3

C
AR

[d
en

ied
-a

dm
iss

ion
]

2,
 4

CA
R

PA
RK

?
ca

r-h
as

-ti
ck

et
 ?

2,
 4

C
AR

PA
RK

?
N

O
T

: c
ar

-h
as

-ti
ck

et
 ?

2,
 4

C
AR

PA
RK

[re
tri

ev
ed

-c
ar

-s
ta

tu
s]

2,
 4

C
AR

PA
RK

?
ca

r-c
lea

re
d-

to
-e

xit
 ?

2,
 4

CA
R

PA
RK

[s
pa

ce
-d

ea
llo

ca
te

d]
2,

4
C

AR
PA

RK
[a

va
ila

ble
-s

pa
ce

s-
in

cr
em

en
te

d]
2,

4
C

AR
PA

RK
[c

ar
-d

et
ai

ls-
up

da
te

d]

2,
4

C
AR

PA
RK

?
NO

T
: c

ar
-c

le
ar

ed
 ?

2,
 4

C
AR

[e
xit

ed
]

2,
 4

C
AR

[d
en

ied
-e

xit
]

2,
 4

C
AR

[d
en

ied
-e

xit
]

2,
4

C
AR

??
 a

pp
ro

ac
he

d-
ex

it
??

Figure 5.46: Car Space Allocation Behaviour derived from the Hospital Bed Allo-

cation System requirements

CHAPTER 5. PROBLEM SOLUTION 153

3 CAR
?? approached-entrance ??5 OPERATOR

?? closed-carpark ??

5 OPERATOR
?? opened-carpark ??

5 CARPARK
[closed]

1, 3, 4, 5 CARPARK
[open]

5 CARPARK
[]

5 CARPARK
?? problems-resolved ??

5 CARPARK
[space-list-initialised-and-restored]

5 CARPARK
[car-list-initialised-&-restored]

2, 4 CAR
?? approached-exit ??

Figure 5.47: Car Space Allocation Initiation Process

3 CAR
?? approached-entrance ??5 OPERATOR

?? closed-carpark ??

2, 3 CAR
? accepted-for-registration ?

2, 3 CARPARK
[car-has-ticket]

2, 3 CAR
? NOT : accepted-for-registration ?

1, 3, 4, 5 CARPARK ̂
[open] 1, 3, 4, 5 CARPARK ^

[open]

1, 3, 4, 5 CARPARK ^
[open]

5 CARPARK ̂
[closed] 2, 3 CARPARK

? car-has-ticket ?

2, 3 CARPARK
[retrieved-car-priority]

2, 3 CARPARK
? has-avail.-space-for-priority ?

2, 3 CARPARK
[car-details-updated]2, 3 CARPARK

[available-spaces-decremented] 2, 3 CAR
[entered]

2, 3 CARPARK
? NOT: car-has-ticket ?

2, 3 CARPARK
[car-priority-created]

3 CAR ̂
?? requested-admission ??

2, 3 CARPARK
? NOT : has-available-space ?

2, 3 CAR
[denied-admission]

Figure 5.48: Car Space Allocation Exit Process

CHAPTER 5. PROBLEM SOLUTION 154

2, 4 CARPARK
[car-details-reevaluated]

1, 3, 4, 5 CARPARK ^
[open]

1, 3, 4, 5 CARPARK ^
[open]

1, 3, 4, 5 CARPARK ̂
[open]

2, 4 CARPARK
? car-has-ticket ? 2, 4 CARPARK

? NOT : car-has-ticket ?

2, 4 CARPARK
[retrieved-car-status]

2, 4 CARPARK
? car-cleared-to-exit ?

2, 4 CARPARK
[space-deallocated] 2, 4 CARPARK

[available-spaces-incremented]
2, 4 CARPARK

[car-details-updated]

2, 4 CARPARK
? NOT : car-cleared ?

2, 4 CAR
[exited] 2, 4 CAR

[denied-exit]

2, 4 CAR
[denied-exit]

2, 4 CAR
?? approached-exit ??

Figure 5.49: Car Space Allocation Entry Process

CHAPTER 5. PROBLEM SOLUTION 155

5.4.3 Translation Results

As a case study for allocation systems, a carpark car-to-space architecture, Fig-

ure5.42is compared with a hospital patient-to-bed architecture, Figure5.34. Each

architecture was translated into the alternate architecture, Figures5.38and5.46.

The primary methodology for translation was by the careful replacement of

component and component-state names with similes that were more meaningful in

their new context, as detailed in Table5.1.

By following this procedure it was found that the carpark and hospital systems

were indeed specific instances of a generic allocation model. The overall process

followed an identical sequence of events.

What was more interesting, was the differences between the two architectures.

Granularity and composition techniques were used in each instance to allow more

detailed descriptions of complex processes, and the breakdown of generic compo-

nents into specialised sub-components.

Granularity relates to the hiding of insignificant information or details by ab-

straction. The ticket vending process for the carpark is a complex subsystem in-

volving time and status tracking, paper feeding and printing. For the purposes of

the allocation system, only the external interfaces to the ticket vendor are impor-

tant. The internal workings are assumed.

For the hospital system, the registration process is far more complicated. A

patient will have to be registered with the hospital and a preliminary determination

of status and priority made, before a bed can be allocated. Hence it is important

for this registration process to be described in more detail than the carpark system.

If the carpark was to account for different types of carspace allocations with pay-

by-month, early bird rates, and permanent spaces, the car registration and tracking

system would need to be implemented to a similar extent as the hospital system.

The other issue is how the system is composed. For a particular section of

functionality or behaviour, it was found that even though the overall process result

may be the same, the actions taken to get to that result would differ. The process

CHAPTER 5. PROBLEM SOLUTION 156

of admission to the carpark involves approaching a ticket-allocator box, taking the

ticket, and entering when the boomgate is up. The semantics of the boomgate are to

allow access only after registration. The hospital may have the admissions desk as

a barrier-to-entry, but its workings are different to the physical ticket machine and

boomgate of the carpark. However the combinations of the two carpark subsystems

produce the same result.

CHAPTER 5. PROBLEM SOLUTION 157

Table 5.1: Component and Component-State names and their Equivalents used for

the Example Architecture Translations

Allocation Systems

Hospital Carpark Generic

Components

hospital carpark container

admin operator operator

patient car client

bed carspace resource

registration ticket index

admissions ticket-allocator addition-point

departures ticket-collector removal-point

admissions entry-boomgate addition-point

departures exit-boomgate removal-point

payment payment usage-cost

Component-States

available opened available

unavailable closed unavailable

finished-processing boomgate-up finished-processing

available boomgate-down available

registered has-ticket is-valid-index

admission entry addition

departure exit removal

requested-admission approached-entrancehas-resource

requested-departure approached-exit requested-resource

cleared-for-departure okay-to-exit resource-available

bed-list space-list resource-list

patient-list car-list client-list

checked-out departed resource-removed

CHAPTER 5. PROBLEM SOLUTION 158

5.4.4 Component Adaptation

Figure5.50shows the initial attempt at adapting the Set Collection System for use

as a Hospital Bed Allocation System. By changing the names of components such

as SET to HOSPITAL and PRODUCER to ADMISSIONS, analogous behaviour

has been created.

There are issues however with this adaptation. The Admissions Process high-

lighted in Figure5.52shows the way beds are allocated to patients. The Patient

outputs a bed, and the Hospital adds this bed to its list of beds. The Hospital should

be providing the bed to the Patient. This is the fundamental difference between a

Collection System such as a Set and an Allocation System. Collections store new

resources, and Allocation Systems track used resources.

To adapt the Set System for use in the Allocation case-studies, this storage

functionality will have to be directly modified, or allowed for in the wrapper code.

See Figures5.54, 5.55, and5.56for the modifications made.

CHAPTER 5. PROBLEM SOLUTION 159

1,
 2

, 3
, 7

HO
SP

IT
AL

[>
 b

ed
 <

 ,
 [.

..]
*]

2
HO

SP
IT

AL
[in

cr
em

en
te

d-
be

ds
-to

ta
l]

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 m

ax
 ?

2
HO

SP
IT

AL
[fu

ll]

2
HO

SP
IT

AL
?

NO
T:

 b
ed

s-
to

ta
l =

 m
ax

 ?

2
HO

SP
IT

AL
[N

O
T:

 fu
ll]

1,
 2

, 4
, 8

HO
SP

IT
AL

[<
 b

ed
 >

 ,
[..

.]*
]

2
HO

SP
IT

AL
[d

ec
re

m
en

te
d-

be
ds

-to
ta

l]

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 0

 ?

2
HO

SP
IT

AL
[e

m
pt

y]

2
HO

SP
IT

AL
?

NO
T:

 b
ed

s-
to

ta
l =

 0
 ?

2
HO

SP
IT

AL
[N

O
T:

 e
m

pt
y]

3
PA

TI
EN

T
<

be
d

>

4
PA

TI
EN

T
>

be
d

<

3,
 4

, 5
, 6

HO
SP

IT
AL

[o
pe

n]

3,
 10

PA
TI

EN
T

||
??

 re
qu

es
te

d-
ad

m
iss

io
n

??
4,

 10
PA

TI
EN

T
||

??
 re

qu
es

te
d-

de
pa

rtu
re

 ?
?

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

5
HO

SP
IT

AL
[e

m
pt

y]

5
HO

SP
IT

AL
[]

5
HO

SP
IT

AL
[N

O
T

: f
ul

l]

3,
 4

, 5
HO

SP
IT

AL
 ^

[o
pe

n]

3
HO

SP
IT

AL
<

 fu
ll-

m
es

sa
ge

 >

3
PA

TI
EN

T
>

fu
ll-

m
es

sa
ge

 <

3,
 4

, 5
HO

SP
IT

AL
 ^

[o
pe

n]

4
HO

SP
IT

AL
<

 e
m

pt
y-

m
es

sa
ge

 >

4
PA

TI
EN

T
>

em
pt

y-
m

es
sa

ge
 <

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 m

ax
 ?

2
HO

SP
IT

AL
[fu

ll]

2
HO

SP
IT

AL
?

NO
T:

 b
ed

s-
to

ta
l =

 m
ax

 ?

2
HO

SP
IT

AL
[N

O
T:

 fu
ll]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 0

 ?

2
HO

SP
IT

AL
[e

m
pt

y]

2
HO

SP
IT

AL
?

NO
T:

 b
ed

s-
to

ta
l =

 0
 ?

2
HO

SP
IT

AL
[N

O
T:

 e
m

pt
y]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

2
HO

SP
IT

AL
[N

O
T:

 e
m

pt
y]

2
HO

SP
IT

AL
[N

O
T:

 fu
ll]

H
os

pi
ta

l A
llo

ca
tio

n
Sy

st
em

de
riv

ed
 fr

om
 C

on
cu

rr
en

t S
et

6,
 10

AD
M

IN
 |

|
??

 re
qu

es
te

d-
un

av
ai

la
bl

e
??

6
HO

SP
IT

AL
[N

O
T:

 o
pe

n-
fo

r-a
dm

iss
io

n]

6
HO

SP
IT

AL
??

 em
pt

y ?
?

6
HO

SP
IT

AL
[N

O
T:

 o
pe

n-
fo

r-d
ep

ar
tu

re
]

6
HO

SP
IT

AL
 ^

[N
O

T
: o

pe
n]

5,
6

HO
SP

IT
AL

[N
O

T
: o

pe
n]

6
AD

M
IN

??
 re

qu
es

te
d-

op
en

 ?
?

6
HO

SP
IT

AL
[o

pe
n-

fo
r-a

dm
iss

io
n]

6
HO

SP
IT

AL
[o

pe
n-

fo
r-d

ep
ar

tu
re

]

3
HO

SP
IT

AL
?

NO
T

: f
ul

l ?

7
HO

SP
IT

AL
?

op
en

-fo
r-a

dm
iss

io
n

?

3
HO

SP
IT

AL
?

 fu
ll ?

7
HO

SP
IT

AL
?

NO
T

: o
pe

n-
fo

r-a
dm

iss
io

n
?

4
HO

SP
IT

AL
?

NO
T

: e
m

pt
y ?

8
HO

SP
IT

AL
?

op
en

-fo
r-d

ep
ar

tu
re

 ?

4
HO

SP
IT

AL
?

 fu
ll ?

8
HO

SP
IT

AL
?

NO
T

: o
pe

n-
fo

r-a
dm

iss
io

n
?

4
HO

SP
IT

AL
[N

O
T:

be
d-

id
 ?

 [.
..]

*]

3,
 4

, 5
HO

SP
IT

AL
 ^

[o
pe

n]

4
HO

SP
IT

AL
<

 n
o-

be
d-

er
ro

r >

4
PA

TI
EN

T
>

no
-b

ed
-e

rro
r <

4
HO

SP
IT

AL
[b

ed
-id

 ?
 [.

..]
*]

Figure 5.50: Hospital Bed Allocation Behaviour derived from the Set Collection

requirements

CHAPTER 5. PROBLEM SOLUTION 160

3, 4, 5, 6 HOSPITAL
[open]

3, 10 PATIENT ||
?? requested-admission ?? 4, 10 PATIENT ||

?? requested-departure ??

5 HOSPITAL
[empty]

5 HOSPITAL
[]

5 HOSPITAL
[NOT : full]

6, 10 ADMIN ||
?? requested-unavailable ??

5, 6 HOSPITAL
[NOT : open]

6 ADMIN
?? requested-open ??

6 HOSPITAL
[open-for-admission] 6 HOSPITAL

[open-for-departure]

Figure 5.51: Hospital Bed Allocation Initiation Process

1, 2, 3, 7 HOSPITAL
[> bed < , [...]*]

2 HOSPITAL
[incremented-beds-total]

2 HOSPITAL
? beds-total = max ?

2 HOSPITAL
[full]

2 HOSPITAL
? NOT: beds-total = max ?

2 HOSPITAL
[NOT: full]

3 PATIENT
< bed >

3, 10 PATIENT ||
?? requested-admission ??

3, 4, 5, 6 HOSPITAL ^
[open]

3, 4, 5, 6 HOSPITAL ^
[open]

3, 4, 5 HOSPITAL ^
[open]

3 HOSPITAL
< full-message >

3 PATIENT
> full-message <

2 HOSPITAL
? beds-total = 0 ?

2 HOSPITAL
[empty]

2 HOSPITAL
? NOT: beds-total = 0 ?

2 HOSPITAL
[NOT: empty]

3, 4, 5, 6 HOSPITAL ^
[open]

2 HOSPITAL
[NOT: empty]

6, 10 ADMIN ||
?? requested-unavailable ??

6 HOSPITAL
[NOT: open-for-admission]

6 HOSPITAL
?? empty ??

6 HOSPITAL
[NOT: open-for-departure]

6 HOSPITAL ^
[NOT : open]

3 HOSPITAL
? NOT : full ?

7 HOSPITAL
? open-for-admission ?

3 HOSPITAL
? full ?

7 HOSPITAL
? NOT : open-for-admission ?

Figure 5.52: Hospital Bed Allocation Admission Process

CHAPTER 5. PROBLEM SOLUTION 161

1, 2, 4, 8 HOSPITAL
[< bed > , [...]*]

2 HOSPITAL
[decremented-beds-total]

2 HOSPITAL
? beds-total = 0 ?

2 HOSPITAL
[empty]

2 HOSPITAL
? NOT: beds-total = 0 ?

2 HOSPITAL
[NOT: empty]

4 PATIENT
> bed <

4, 10 PATIENT ||
?? requested-departure ??

3, 4, 5, 6 HOSPITAL ^
[open]

3, 4, 5 HOSPITAL ^
[open]

4 HOSPITAL
< empty-message >

4 PATIENT
> empty-message <

2 HOSPITAL
? beds-total = max ?

2 HOSPITAL
[full]

2 HOSPITAL
? NOT: beds-total = max ?

2 HOSPITAL
[NOT: full]

3, 4, 5, 6 HOSPITAL ^
[open]

3, 4, 5, 6 HOSPITAL ^
[open]

2 HOSPITAL
[NOT: full]

4 HOSPITAL
? NOT : empty ?

8 HOSPITAL
? open-for-departure ?

4 HOSPITAL
? full ?

8 HOSPITAL
? NOT : open-for-admission ?

4 HOSPITAL
[NOT:bed-id ? [...]*]

3, 4, 5 HOSPITAL ^
[open]

4 HOSPITAL
< no-bed-error >

4 PATIENT
> no-bed-error <

4 HOSPITAL
[bed-id ? [...]*]

Figure 5.53: Hospital Bed Allocation Departure Process

CHAPTER 5. PROBLEM SOLUTION 162

1,
 2

, 3
, 7

HO
SP

IT
AL

[<
 b

ed
 >

 ,
 [.

..]
*]

2
H

O
SP

IT
AL

[in
cr

em
en

te
d-

be
ds

-to
ta

l]

2
H

O
SP

IT
AL

?
be

ds
-to

ta
l =

 m
ax

 ?

2
H

O
SP

IT
AL

[fu
ll]

2
H

O
SP

IT
AL

?
NO

T:
 b

ed
s-

to
ta

l =
 m

ax
 ?

2
H

O
SP

IT
AL

[N
O

T:
 fu

ll]

1,
 2

, 4
, 8

H
O

SP
IT

AL
[>

 b
ed

 <
 ,

[..
.]*

]

2
H

O
SP

IT
AL

[d
ec

re
m

en
te

d-
be

ds
-to

ta
l]

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 0

 ?

2
H

O
SP

IT
AL

[e
m

pt
y]

2
HO

SP
IT

AL
?

NO
T:

 b
ed

s-
to

ta
l =

 0
 ?

2
HO

SP
IT

AL
[N

O
T:

 e
m

pt
y]

3
PA

TI
EN

T
>

be
d

<
4

PA
TI

EN
T

<
be

d
>

3,
 4

, 5
, 6

H
O

SP
IT

AL
[o

pe
n]

3,
 1

0
PA

TI
EN

T
||

??
 re

qu
es

te
d-

ad
m

iss
io

n
??

4,
 1

0
P

AT
IE

N
T

||
??

 re
qu

es
te

d-
de

pa
rtu

re
 ?

?

3,
 4

, 5
, 6

HO
SP

IT
AL

 ̂
[o

pe
n]

3,
 4

, 5
, 6

H
O

SP
IT

AL
 ̂

[o
pe

n]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

5
H

O
SP

IT
AL

[e
m

pt
y]

5
HO

SP
IT

AL
[]

5
H

O
SP

IT
AL

[N
O

T
: f

ul
l]

3,
 4

, 5
HO

SP
IT

AL
 ^

[o
pe

n]

3
H

O
SP

IT
AL

<
 fu

ll-
m

es
sa

ge
 >

3
PA

TI
EN

T
>

fu
ll-

m
es

sa
ge

 <

3,
 4

, 5
H

O
SP

IT
AL

 ̂
[o

pe
n]

4
H

O
SP

IT
AL

<
 e

m
pt

y-
m

es
sa

ge
 >

4
PA

TI
EN

T
>

em
pt

y-
m

es
sa

ge
 <

2
HO

SP
IT

AL
?

be
ds

-to
ta

l =
 m

ax
 ?

2
HO

SP
IT

AL
[fu

ll]

2
H

O
SP

IT
AL

?
NO

T:
 b

ed
s-

to
ta

l =
 m

ax
 ?

2
H

O
SP

IT
AL

[N
O

T:
 fu

ll]

3,
 4

, 5
, 6

H
O

SP
IT

AL
 ̂

[o
pe

n]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ̂
[o

pe
n]

2
H

O
SP

IT
AL

?
be

ds
-to

ta
l =

 0
 ?

2
H

O
SP

IT
AL

[e
m

pt
y]

2
H

O
SP

IT
AL

?
NO

T:
 b

ed
s-

to
ta

l =
 0

 ?

2
H

O
SP

IT
AL

[N
O

T:
 e

m
pt

y]

3,
 4

, 5
, 6

HO
SP

IT
AL

 ^
[o

pe
n]

2
H

O
SP

IT
AL

[N
O

T:
 e

m
pt

y]

2
H

O
SP

IT
AL

[N
O

T:
 fu

ll]

H
os

pi
ta

l A
llo

ca
tio

n
Sy

st
em

de
riv

ed
 fr

om
 C

on
cu

rr
en

t S
et

w
ith

 R
es

ou
rc

e
St

or
ag

e
M

od
ifi

ca
tio

n

6,
 1

0
AD

M
IN

 |
|

??
 re

qu
es

te
d-

un
av

ail
ab

le
??

6
H

O
SP

IT
AL

[N
O

T:
 o

pe
n-

fo
r-a

dm
iss

ion
]

6
H

O
SP

IT
AL

??
 e

m
pt

y ?
?

6
H

O
SP

IT
AL

[N
O

T:
 o

pe
n-

fo
r-d

ep
ar

tu
re

]

6
HO

SP
IT

AL
 ̂

[N
O

T
: o

pe
n]

5,
 6

H
O

SP
IT

AL
[N

O
T

: o
pe

n]

6
AD

M
IN

??
 re

qu
es

te
d-

op
en

 ?
?

6
H

O
SP

IT
AL

[o
pe

n-
fo

r-a
dm

is
sio

n]
6

H
O

SP
IT

AL
[o

pe
n-

fo
r-d

ep
ar

tu
re

]

3
H

O
SP

IT
AL

?
N

O
T

: f
ul

l ?

7
H

O
SP

IT
AL

?
op

en
-fo

r-a
dm

iss
io

n
?

3
HO

SP
IT

AL
?

 fu
ll ?

7
HO

SP
IT

AL
?

NO
T

: o
pe

n-
fo

r-a
dm

iss
ion

 ?

4
H

O
SP

IT
AL

?
NO

T
: e

m
pt

y ?

8
H

O
SP

IT
AL

?
op

en
-fo

r-d
ep

ar
tu

re
 ?

4
H

O
SP

IT
AL

?
 fu

ll ?

8
H

O
SP

IT
AL

?
NO

T
: o

pe
n-

fo
r-a

dm
iss

ion
 ?

4
HO

SP
IT

AL
[N

O
T:

be
d-

id
?

[..
.]*

]

3,
 4

, 5
HO

SP
IT

AL
 ^

[o
pe

n]

4
HO

SP
IT

AL
<

 n
o-

be
d-

er
ro

r >

4
PA

TI
EN

T
>

no
-b

ed
-e

rro
r <

4
H

O
SP

IT
AL

[b
ed

-id
 ?

 [.
..]

*]

Figure 5.54: Hospital Bed Allocation Behaviour derived from the Set Collection

requirements

CHAPTER 5. PROBLEM SOLUTION 163

1, 2, 3, 7 HOSPITAL
[< bed > , [...]*]

2 HOSPITAL
[incremented-beds-total]

3 PATIENT
> bed <

3, 4, 5 HOSPITAL ^
[open]

3 HOSPITAL
< full-message >

3 PATIENT
> full-message <

3 HOSPITAL
? NOT : full ?

7 HOSPITAL
? open-for-admission ?

3 HOSPITAL
? full ?

7 HOSPITAL
? NOT : open-for-admission ?

Figure 5.55: Hospital Bed Allocation Admission Process Alterations

1, 2, 4, 8 HOSPITAL
[> bed < , [...]*]

2 HOSPITAL
[decremented-beds-total]

4 PATIENT
< bed >

4 HOSPITAL
? NOT : empty ?

8 HOSPITAL
? open-for-departure ?

4 HOSPITAL
[NOT:bed-id ? [...]*]

3, 4, 5 HOSPITAL ^
[open]

4 HOSPITAL
< no-bed-error >

4 PATIENT
> no-bed-error <

4 HOSPITAL
[bed-id ? [...]*]

Figure 5.56: Hospital Bed Allocation Departure Process Alterations

CHAPTER 5. PROBLEM SOLUTION 164

5.4.5 Quality Identification

The last task for component re-use is quality identification. This section will un-

dertake to identify some of the quality attributes defined in Section5.1.3. This will

be performed using the Behavior Tree architecture descriptions of the Carpark and

Hospital Bed Allocation Systems discussed previously.

There is a point about quality that needs to be made. There is a difference

between the quality of a system, and the quality inherent to the model used to

represent the system. The discussion that follows generally talks about the quality

of the system, but for some items, the quality of the Behavior Tree model is of

more importance.

• Availability – The percentage of planned uptime during which system is ac-

tually available for use and fully operational. How much a system is usefully

available to perform the work which it was designed to do.

One of the main steps in our Collection and Allocation System case-studies

was to add availability control. This was implemented by using a parallel

process for an operator to gracefully shutdown and reset the main operations

of the system. By implementing this external behavior, if the system under-

goes a hardware failure, the operator can restore the system to operational

status once the damage has been fixed.

In terms of a failure of the boomgate or automatic ticket vendor in the

Carpark system, the normal operations of the Carpark cease until the Op-

erator restores the system. To implement higher levels of availability, only

the processes directly affected by the failure could be shutdown. The exit

gate could be closed, but the entrance could still operate correctly. This

could introduce longer term issues, with the Carpark filling up. Should the

cars be notified upon entry that there may be a problem leaving the Carpark

later on?

• Integrity (Security) – The Trustworthiness of the system to be in the right

CHAPTER 5. PROBLEM SOLUTION 165

state, with security intact.

As with Availability, it is important that the system can detect when it is op-

erating outside of its intended behavior. Whether this is caused by hardware

failure or malicious use, the system must retain its integrity. The primary

mechanism for achieving this quality within Behavior Trees is the control

flow notations. Equivalent to IF-THEN-ELSE operators, all the ELSE even-

tualities must be considered and implemented.

For the Carpark, if the Ticket-Vendor isn’t operational, is it still possible for

a Car to enter the Carpark for free and unnoticed? This case is allowed for

by using the Boomgate barrier; a ticket must be taken before the Boomgate

will lift, regardless of the operational state of the system.

In the Hospital, there is a problem with integrity. While the hospital is open,

there is nothing to stop a person walking in a accessing restricted areas, and

data, as well as consuming a bed, without the Allocation system noticing. To

build a higher level of integrity into this system, either an area barrier system

using ID swipe cards, or random security guard checks could be introduced.

This would align the physical system with the software version.

Other techniques for integrity are required with parallel processes accessing

the same data, as demonstrated in the case-studies. To maintain integrity of

these shared, stored resources, mutual exclusion must be implemented using

the Tight Control Flow notation.

• Efficiency – How well the system utilises processor capacity, disk space,

memory, or communication bandwidth.

One method of building efficiency into a Behavior Tree is by using threaded

control flow, or concurrent processes. As mentioned previously, integrity of

data is maintained using the Tight Control notation. At the cost of some

complexity, this is the best way of ensuring availability and efficiency of the

system to a large number of external producers and consumers.

CHAPTER 5. PROBLEM SOLUTION 166

The next major step required for adapting the Carpark and Hospital Alloca-

tion systems, is to introduce buffers, or queues at each of the major process-

ing points. In reality this means, that cars must queue to enter and exit the

Carpark. Without this capability, cars must randomly attempt to be the next

to use the entrance, potentially causing some accidents. This is modelled by

bottle-necking within the software system.

• Flexibility – How much effort is needed to add new capabilities to the prod-

uct.

One of the major tasks of this dissertation was to investigate the adaptability

of Behavior Trees. By using techniques such as translation, pruning, in-

tegration, and projections, it is shown that any Behavior Tree architecture

description will inherently have a high level of flexibility.

• Interoperability – How easily the product can exchange data or services with

other systems. The ability to communicate easily with other assets, on dif-

ferent platforms and machines, and be integrated into an application.

There is high complexity in implementing data communications using Jav-

aBeans or .NET. The Behavior Tree model does not have this problem, be-

cause all communications between components are considered to be direct,

instantaneous and transparent. Issues for distributed systems, such as time

delay and data loss, are only considered at the implementation level at this

stage. There is an argument that an architecture description does not need

to model these issues. But as this is an important issue for Component-

based development, Interoperability needs to be investigated further with

more depth.

• Reliability – The degree to which the system does what it is intended to do,

as opposed to something else. The probability of software executing without

failure for a specified period of time. Percentage of correctly performed

operations. The length of time the system runs before revealing a new defect.

CHAPTER 5. PROBLEM SOLUTION 167

This quality attribute is more concerned with the implementation of the sys-

tem. Behavior Trees tend to be highly reliable, when developed correctly.

One of the key benefits of using this methodology is its validation of the user

requirements. Its dynamic representation of the behaviour of the system give

the designer a good perspective overall. The more issues resolved with re-

quirements at the architectural design stage, will produce a more reliable

initial implementation.

• Robustness – The degree to which a system or component continues to func-

tion correctly when confronted with invalid input data, defects in connected

software or hardware components, or unexpected operating conditions.

By allowing for the case of hardware failure, in some of the automated

systems in the Carpark, and by creating parallel processes for each sub-

component such as the entry and exit gates, robustness can be built into the

system. To produce a high level of robustness, separate multiple entry and

exit points could be introduced. If one point failed the system could still

fully function, while being maintained.

• Usability – How well people are going to be able and be motivated to use the

system practically.

The flow of behaviour through an automated system such as a Carpark must

be highly usable. Any issues will effect the traffic flow, and profitability

of the system. The Hospital system does not need to be efficient, because

versatile humans are part of the system. However to maintain morale, in

such a sensitive environment, usability should carefully considered. How

many patients are in the queue to being admitted, and why?

• Maintainability – How quickly an unreliable system can be brought to a

reliable state.

By allowing for early identification of hardware and malicious use, the sys-

tem can go into a maintenance state. This state can be used by the system to

CHAPTER 5. PROBLEM SOLUTION 168

validate all internal values, before re-initialising. The best way to introduce

maintainability into Behavior Trees, is to allow for situations outside of nor-

mal operations. These situations should be modelled using Behaviour Trees

just the same as normal functionality. For example, in the Carpark system,

if a car breaks down or is unable to pay at one of the exit points, a procedure

should be introduced to remove the car, and make sure the resource list is

updated before resuming.

• Portability – The ease of moving a system from one environment to another.

The effort required to migrate a piece of software from one operating envi-

ronment to another. The ability to run on different platforms.

The Behavior Tree model is very portable at an architecture level. It is a

representation of the requirements of the system, rather than a binary im-

plementation. By introducing the XML Schema version of the model, use

by 3rd-party development software is now possible. Work will commence

in the near future in producing a virtual machine version of Behavior Trees.

This will allow the model to be run without limitations of operating system,

or language.

• Reusability – The extent to which a software component can be used in ap-

plications other than the one for which it was initially developed.

Much of the new work produced in this dissertation, has been the investiga-

tion of adaptability or reusability of the components represented by Behavior

Trees. It is found that Behavior Tree models are highly reusable. Issues deal-

ing with granularity are discussed in Section5.4.3. Areas of incompatibility

tend to be immediately picked up by the designer. This was demonstrated by

adapting the Set Collection to a Hospital Allocation System. It was found

that the way resources are stored between the two system is very different.

However, once the problem was identified, adapting the system was very

simple.

Chapter 6

Conclusions

6.1 Conclusions

The problem defined in Section3.1will be answered in the following summary.

1. Architecture determines quality attributes, and very little, must be known

about the functionality of the system in order to draw an initial set of quality

attribute conclusions. This is a central premise for the scope of this disserta-

tion. Most quality attribute analysis and adaptability work has been produced

relative to the software architecture.

2. Quality cannot be built into existing black-box components. These compo-

nents cannot be modified after production. However, quality can be built into

the system that integrates these components.

3. Determining the quality attributes of the system as a whole, requires that

all components have an architecture description based on the same model,

and have quality attributes specified. This dissertation proposes using XML

specification of requirements and the Behavior Tree architecture, to allow

for the automatic comparison of attributes between components.

Certain requirements such as performance, and efficiency relate to the archi-

tecture, but more so to the implementation. C would be a better language

169

CHAPTER 6. CONCLUSIONS 170

to implement a performance-critical system, rather than Java. However Java

has high Portability. The quality attributes for the architectural design would

have to be modified to take these implementation details into account.

4. A developer can only analyse a software component for its quality attributes

if:

(a) the set of requirements used to originally develop the component, as

well as the architecture design, and implementation must be complete,

correct, consistent. However requirements are rarely complete, cor-

rect, consistent. By implementing the requirements within a Behavior

Tree, requirements and the overall system behaviour can be validated.

Having a single dynamic model of the system’s behaviour, helps the

designer to identify and correct overall errors and omissions in require-

ment logic and flow.

(b) the quality attributes are described and quantified in a standard format,

and implemented using a standard methodology. Unfortunately qual-

ity standards such ISO 9126, only talk about individual attributes from

an abstract, high-level view. They may provide the trade-off relation-

ships between attributes, but measurement or implementation of these

attributes is not addressed. the emerging SQuaRE standard proposes

a changing viewpoint of quality attributes, depending on the user and

stage of development. At this stage it is not certain whether this stan-

dard will be released in a timely and usable manner.

5. By generating an initial architecture based only on a component’s functional

requirements, a component will result which has certain minimum levels of

quality attributes. By transforming the structure of this Behavior Tree archi-

tecture description using pruning, projection, and augmentation techniques,

the quality requirements for the component can be met.

CHAPTER 6. CONCLUSIONS 171

Most of the minimum attribute levels relate to the architecture model used

and the functionality as implemented. Behavior Trees have an inherent de-

gree of portability, and reusability. So by generating an architecture de-

scription using Behavior Tree, a degree of reusability will already have been

achieved. Whether this resusability is compromised or enhanced by the bi-

nary implementation of the system, is up to the developer and their choice of

programming paradigm and style.

6. The final point deals with the integration and adaptation of existing com-

ponents in new systems. These conclusions arise from a number of case-

studies using the Stack, Queue, and Set Collections, and the Hospital Bed

and Carpark Space Allocation Systems.

• Analogous Behaviour – The Stack, Queue, and Set systems are all

types of resource collections. The only thing that varies is the way

resources are added or removed from the system. Hence these system

are good candidates for being adapted for reuse. By attempting to reuse

the Set component in the Hospital Bed Allocation system, it was found

that there was a difference in how resources are used in Collections and

Allocation Systems. The modification was minor. Overall analogous

systems only require minor modifications to make translated behaviour

conform to a new use. The validation benefits arising from having a

different perspective on the same system, outweigh the modification

issues.

• Granularity – a simple system can be projected out of a more com-

plex analogous system. In the Car Space Allocation System, more

detail is placed in the behaviour of the Ticket Vendor and Collector

sub-components with Boomgates, due to their automated nature. The

Hospital Bed Allocation System, has people operating the Registration

Desk, so the behaviour required is more general, and modelled using

CHAPTER 6. CONCLUSIONS 172

only a single component.

• Quality Attributes – to introduce higher levels of efficiency, reliabil-

ity, performance, maintainability to a system, parallel processes, as op-

posed to a linear sequence of operations, can be introduced. The func-

tionality of the Behavior Trees is still very similar, except processes for

addition, removal, and operation control can be separated, and scaled.

An independent security process could be introduced to maintain the

integrity of the system.

6.2 Summary of Contributions

This section identifies the contributions of new knowledge that are presented within

this dissertation.

1. A detailed analysis of transforming existing Behavior Tree architectures us-

ing a different set of requirements is made. Primarily this has demonstrated

a way of adapting existing components to allow for changing functional and

quality requirements. See Sections5.4.3and5.4.4.

2. Identification of a number of quality attributes within Behavior Tree archi-

tecture descriptions has been made, as a part of taking a set of requirements

through to an architectural design, and adapting existing components for new

situations. See Section5.4.5.

3. A model for specifying quality attributes and functional requirements using

XML is provided. See SectionB.

4. An XML schema specification for Behavior Trees has been developed from

the existing EBNF specification. See SectionsA.3 andA.4.

5. Described in detail the overall process and issues with reusing existing soft-

ware components in a new system.

CHAPTER 6. CONCLUSIONS 173

6. An review of historical quality attribute specifications with respect to the

emerging ISO15000 (SQuaRE) standard has been made.

6.3 Future Research

This section is a brief overview of areas and topics for future research, that are

directly related to this dissertation.

• Update quality attribute specifications with best practice. (OOSPICE and

ISO 15000 (SQuaRE) will soon be released.) As such, an alignment between

product and process quality standards and best practice needs to more fully

investigated.

• More detailed research into specific quality attributes, and analysis using

Behavior Trees, needs to be made. This dissertation has presented a high-

level view of all attributes with respect to case-studies and the Behavior Tree

model itself.

• A process for developing components using implementation standards such

as JavaBeans or DCOM, from Behavior Tree architecture descriptions needs

to be developed.

• Traceability of requirements through architecture and code implementation

need to be investigated. This will allow simulation of requirement behaviour

and alignment to actual binary run-time code.

• Behavior Tree specification using XML needs to be updated with other cur-

rent areas of research use. XML will allow transfer of Behavior Trees be-

tween various automated testing and analysis tools, so it is imperative that

there is one implementation.

• Alignment of work with the new Model Driven Architecture middleware

standard from OMG, as well as other open interface standards such as XMI

CHAPTER 6. CONCLUSIONS 174

and SOAP need to be investigated.

Chapter 7

Glossary of Terms

This is the definitions list of important terms used in this dissertation.

architectural design is the process of converting a set of requirements into a soft-

ware architecture that fulfills, or at least facilitates the fulfillment of, the

requirements. [12, Bosch(2000)]

Behavior TreeTM “is a formal tree-like graphical notation that represents the be-

haviour exhibited by individual or sets of entities, that realise or change

states, make decisions, respond to or cause events, and interact by exchang-

ing information and/or passing control.” [20, Dromey (2002)]

Behavior Tree component

software architecture The software architecture of a program or computing sys-

tem is the structure or structures of the system, which comprise software

components, the externally visible properties of those components and the

relationships among them. [7, Basset al.(1998)]

software component A software component is a unit of composition with explic-

itly specified provided, required and configuration interfaces and quality at-

tributes. [12, Bosch(2000)] [58, Wecket al.(1998)] additionally requires that

components are subject to composition by third parties without adaptation.

175

CHAPTER 7. GLOSSARY OF TERMS 176

software quality The degree to which software possesses a desired combination

of attributes (e.g. reliability, interoperability) [16, IEEE 1061(1992)]

software reuse The systematic practice of developing software from a stock of

building blocks, so that similarities in requirements and/or architecture be-

tween applications can be exploited to achieve substantial benefits in pro-

ductivity, quality and business performance. [23, Ezanet al.(2002)]

system An integrated composite that consists of one or more of the processes,

hardware, software, facilities and people, that provides a capability to satisfy

a stated need or objective. [17, ISO/IEC 12207(1995)]

Chapter 8

Acronyms

This is the list of acronyms used in this dissertation.

CMM (or SW-CMM) Capability Maturity Model is a method for evaluating the

maturity of an organisation’s software development and maintenance pro-

cesses.

CORBA Common Object Request Broker Architecture - OMG middleware frame-

work standard for components distributed across hetergeneous networks.

[23, Ezanet al.(2002)]

OMG Object Management Group

UML Unified Modelling Language - Standard method-independent language from

OMG for specifying, visualising, constructing and documenting artifacts of

software systems. [23, Ezanet al.(2002)]

OO Object-Oriented - An approach to software development based on the iden-

tification and classification of entities in the problem domain and their be-

haviours. [23, Ezanet al.(2002)]

CASE Computer-Aided Software Engineering - The use of software tools to sup-

port the software process. [23, Ezanet al.(2002)]

177

CHAPTER 8. ACRONYMS 178

TQM Total Quality Management

COCOMO Constructive Cost Modelling

MDA Model Driven Architecture

XML eXtensible Markup Language - A meta-language in which markup lan-

guages for different classes of documents can be defined. [23, Ezanet

al.(2002)]

XMI XML Metadata Interchange

SOAP Simple Object Access Protocol

MOF Meta Object Facility

PIM Platform Independent Model

PSM Platform-Specific Model

QAW Quality Attribute Workshop

CBSE Component-Based Software Engineering

QoS Quality-of-Service

COM Component Object Model - Microsoft framework standard for components

running on a single machine. COM+ (also known as DCOM) is an extension

for distributed computing. [23, Ezanet al.(2002)]

DCOM Distributed COM - Microsoft middleware for components distributed across

networks of Windows platforms. Provides distribution and transaction man-

agement services. [23, Ezanet al.(2002)]

SGML Standard Generalised Markup Language

Bibliography

[1] D. E. Abel and T. P. Rout. Defining and specifying the quality attributes of

software products.Australian Computer Journal, 25(3):105–112, Aug 1993.

4.2.6, 4.2.6, 4.2.6

[2] Hedley Apperly, Grady Booch, and Bill Councill. The near-term future of

component-based software engineering. InComponent-Based Software En-

gineering: Putting the Pieces Together, chapter 42. Addison-Wesley, Boston,

2001. 4.7.1

[3] Architecture Board ORMSC. Model driven architecture (MDA). Techni-

cal report, Object Management Group, Jul 2001.http://www.omg.org/

cgi-bin/doc?ormsc/2001-07-01 (Accessed October 2002).4.6.2

[4] Felix Bachmann, Len Bass, and Mark Klein. Illuminating the fundamen-

tal contributors to software architecture quality. Technical Report Techni-

cal Report CMU/SEI-2002-TR-025, Carnegie Mellon Software Engineering

Institute, October 2002.http://www.sei.cmu.edu/pub/documents/02.

reports/pdf/02tr025.pdf Accessed October 2002.2.2

[5] Mario R. Barbacci, Robert Ellison, Judith A. Stafford, Charles B. Weinstock,

and William G. Wood. Quality attribute workshops. Technical Report Techni-

cal Report CMU/SEI-2001-TR-010, Carnegie Mellon Software Engineering

Institute, May 2001.http://seir.sei.cmu.edu/01tr010.pdf Accessed

March 2002. 4.7.4

179

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr025.pdf
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr025.pdf
http://seir.sei.cmu.edu/01tr010.pdf

BIBLIOGRAPHY 180

[6] Mario R. Barbacci, Mark H. Klein, and Weinstock Charles B. Principles for

evaluating the quality attributes of a software architecture. Technical Report

Technical Report CMU/SEI-96-TR036, Carnegie Mellon Software Engineer-

ing Institute, May 1997.http://seir.sei.cmu.edu/tr036.96.pdf Ac-

cessed March 2002.4.4, 4.7.4

[7] Len Bass, Paul Clements, and Rick Kazman.Software Architecture in Prac-

tice. The SEI Series in Software Engineering. Addison Wesley Longman,

Reading, Massachusetts, first edition, 1998.2.2, 3.2, 4.1.1, 4.2.2, 4.2.2,

4.2.4, 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.5, 5, 7

[8] Len Bass, Mark Klein, and Felix Bachmann. Quality attribute design primi-

tives. Technical Report Technical Note CMU/SEI-96-TR-017, Carnegie Mel-

lon Software Engineering Institute, Dec 2000.http://seir.sei.cmu.edu/

00tn017.pdf Accessed March 2002.3.2, 4.2.7

[9] John Bergey, Mario Barbacci, and William Wood. Using quality attribute

workshops to evaluate architectural design approaches in a major system

acquisition: A case study. Technical Report Technical Note CMU/SEI-

2000-TN-010, Carnegie Mellon Software Engineering Institute, Jul 2000.

http://seir.sei.cmu.edu/00tn010.pdfAccessed March 2002.3.2, 3.3,

4.7.4

[10] B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood

Cliffs, N.J., 1981. 3.2

[11] B. W. Boehm, J. R. Brown, M. Lipow, G. J. MacLeod, and M. J. Merritt.

Characteristics of Software Quality. Elsevier North-Holland, New York, first

edition, 1978. 4.1.3

[12] Jan Bosch. Design and Use of Software Architectures. Addison-Wesley,

Harlow, England, first edition, 2000.2.2, 3.2, 3.3, 4.5.7, 4.5.7, 4.5.7, 7

http://seir.sei.cmu.edu/tr036.96.pdf
http://seir.sei.cmu.edu/00tn017.pdf
http://seir.sei.cmu.edu/00tn017.pdf
http://seir.sei.cmu.edu/00tn010.pdf

BIBLIOGRAPHY 181

[13] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Sim-

ple object access protocol (SOAP) 1.1. W3c note, World Wide Web Con-

sortium, May 2000.http://www.w3.org/TR/2000/NOTE-SOAP-20000508

(Accessed October 2002).4.6.2

[14] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible

markup language (XML) 1.0 (second edition). W3c recommendation, World

Wide Web Consortium, Oct 2000.http://www.w3.org/TR/REC-xml (Ac-

cessed October 2002).4.6.2

[15] David Carney. Assembling large systems from COTS components: Oppor-

tunities, cautions and complexities. Technical report, Carnegie Mellon Soft-

ware Engineering Institute, Jun 1997.5.2

[16] Software Engineering Technical Committee. Standard for a software quality

metrics methodology. Standard 1061, The Institute of Electrical and Elec-

tronics Engineers, New York, 1992.7

[17] Software Engineering Technical Committee. Standard for information tech-

nology software life cycle processes. Standard 12207.0, International Orga-

nization for Standardization/International Electrotechnical Commission, New

York, 1995. 4.4, 5.1.1, 5.1.1, 7

[18] Michael S. Deutsch and Ronald R. Willis.Software Quality Engineering: A

Total Technical and Management Approach. Prentice Hall, Englewood Cliffs,

N.J., first edition, 1988.4.1.3, 4.2.6, 4.2.6, 4.2.6

[19] R. G. Dromey. Genetic software engineering. Technical report, Software

Quality Institute, Jan 2001.http://www.sqi.gu.edu.au/gse/papers/

GSE-IEEE-Final.pdf (Accessed April, 2002).4.6.1

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/REC-xml
http://www.sqi.gu.edu.au/gse/papers/GSE-IEEE-Final.pdf
http://www.sqi.gu.edu.au/gse/papers/GSE-IEEE-Final.pdf

BIBLIOGRAPHY 182

[20] R. G. Dromey. EBNF for behaviour tree notation. Technical report, Software

Quality Institute, Jul 2002. http://www.sqi.gu.edu.au/gse/papers/

EBNF-Behaviour-Tree.pdf (Accessed July, 2002).7, A, A.1

[21] R. G. Dromey. Genes, jigsaw puzzles and software engineering. Technical

report, Software Quality Institute, Jun 2002.http://www.sqi.gu.edu.au/

gse/papers/Genes-Jigsaws-SE.pdf (Accessed July, 2002).4.6.1

[22] R. Geoff Dromey. A model for software product quality. In Robin B.

Hunter and Richard H. Thayer, editors,Software Process Improvement, pages

146–462. IEEE Computer Society Press, United States of America, 1995.

http://www.sqi.gu.edu.au/publications/Model_prod_qual.ps (Ac-

cessed April, 2002).4.1.3, 4.1.3, 4.1.3

[23] Michel Ezran, Maurizio Morisio, and Colin Tully.Practical Software Reuse.

Practitioner Series. Springer-Verlag, London, first edition, 2002.7, 8

[24] Norman Fenton and Shari Lawrence Pfleeger.Software Metrics: A Rigorous

and Practical Approach. ITP, London, UK, second edition, 1997.4.3

[25] Donald G. Firesmith and Brian Henderson-Sellers. The OPEN process frame-

work - an overview. Final Draft, May 2001.4.7

[26] Tom Gilb.Principles of Software Engineering Management. Addison-Wesley

Publishing Company, Reading, Massachusetts, first edition, 1988.4.2, 4.2.1,

4.3, 5

[27] Object Management Group. OMG-XML metadata interchange (XMI) spec-

ification, v1.2. Formal specification, Object Management Group, Jan

2002. http://www.omg.org/cgi-bin/doc?formal/02-01-01.pdf (Ac-

cessed October 2002).4.6.2

[28] Kenneth A. Lambert and Martin Osborne.Java: A Framework for Program

Design and Data Structures. Brooks/Cole, Australia, first edition, 2000.5.3

http://www.sqi.gu.edu.au/gse/papers/EBNF-Behaviour-Tree.pdf
http://www.sqi.gu.edu.au/gse/papers/EBNF-Behaviour-Tree.pdf
http://www.sqi.gu.edu.au/gse/papers/Genes-Jigsaws-SE.pdf
http://www.sqi.gu.edu.au/gse/papers/Genes-Jigsaws-SE.pdf
http://www.sqi.gu.edu.au/publications/Model_prod_qual.ps
http://www.omg.org/cgi-bin/doc?formal/02-01-01.pdf

BIBLIOGRAPHY 183

[29] P. Lawlis et al. pages 21–25, Sep 1995.4.4

[30] Carma MacClure.Software Reuse: A Standards-Based Guide. IEEE Com-

puter Society, Los Alamitos, California, 2001.4.4

[31] M. D. McIlroy. Mass produced software components. In P. Naur and B. Ran-

dell, editors,Software Engineering, Report on a Conference Sponsored by the

NATO Science Committee, 1969. 3.3, 4.5.7

[32] Andreas Polze. Building blocks for achieving quality of service for com-

mercial off-the-shelf (COTS) middleware. Technical Report Technical Note

CMU/SEI-99-TR001, Carnegie Mellon Software Engineering Institute, May

1999. http://seir.sei.cmu.edu/99tr001.pdf Accessed March 2002.

4.7.5

[33] William A. Ruh, Francis X. Maginnis, and William J. Brown.Enterprise

Application Integration. Wiley Tech Brief Series. John Wiley and Sons, Inc,

New York, first edition, 2000.4.5.6

[34] Robert C. Seacord, David Mundie, and Somjai Boonsiri. K-BACEE: A

knowledge-based automated component ensemble evaluation tool. Technical

Report Technical Note CMU/SEI-2000-TN-015, Carnegie Mellon Software

Engineering Institute, Dec 2000.http://seir.sei.cmu.edu/00tn015.

pdf Accessed March 2002.3.2, 4.7.6

[35] Secretariat. Software product evaluation – quality characteristics and guide-

lines for their use. Technical Standard ISO 9126, International Organisation

for Standardisation, Geneva, 1991.4.1.3, 4.1.3, 4.2.6, 4.2.6, 5

[36] JSTC1/SC7 Secretariat. 9126-10: Software engineering software

quality general overview, reference models and guide to software

product requirements and evaluation (square). Working Document

N2596, ISO/IEC JTC1/SC7, Apr 2002.http://www.sqi.gu.edu.au/

http://seir.sei.cmu.edu/99tr001.pdf
http://seir.sei.cmu.edu/00tn015.pdf
http://seir.sei.cmu.edu/00tn015.pdf
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2596.pdf

BIBLIOGRAPHY 184

sc7-mirror/private_files/07n2596.pdf (accessed March 2002).4.2.5,

5, 5.1.2

[37] JSTC1/SC7 Secretariat. Iso/iec 9126-30: Software engineering software

product quality requirements and evaluation part 30: quality metrics metrics

reference model and guide. Working Document N2582, ISO/IEC JTC1/SC7,

Jan 2002. http://www.sqi.gu.edu.au/sc7-mirror/private_files/

07n2582.pdf (accessed March 2002).4.2.5

[38] JSTC1/SC7 Secretariat. Wd 12119 software engineering software prod-

uct evaluation requirements for quality of commercial off the shelf soft-

ware product (cots) and instructions for testing. Working Document

N2598, ISO/IEC JTC1/SC7, Mar 2002.http://www.sqi.gu.edu.au/

sc7-mirror/private_files/07n2598.zip (accessed March 2002).4.7.3

[39] Mary Shaw. Truth vs knowledge: The difference between what a component

does and what we know it does, Mar 1996.4.7.5

[40] Jon Siegel and OMG Staff Strategy Group. Developing in OMG’s

model-driven architecture. White paper, Object Management Group, Nov

2001.ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf (Accessed Oc-

tober 2002).4.6.2

[41] Richard Soley and OMG Staff Strategy Group. Model driven architecture.

White paper, Object Management Group, Nov 2000.ftp://ftp.omg.org/

pub/docs/omg/00-11-05.pdf (Accessed October 2002).4.6.2

[42] Alistair Sutcliffe. The Domain Theory; Patterns for Knowledge and Software

Reuse. Lawrence Erlbaum Associates, Mahwah, New Jersey, first edition,

2002. 4.5.1

[43] Will Tracz. COTS myths and other lessons learned in component-based soft-

ware development. InComponent-Based Software Engineering: Putting the

Pieces Together, chapter 6. Addison-Wesley, Boston, 2001.4.7.2

http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2596.pdf
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2596.pdf
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2582.pdf
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2582.pdf
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2598.zip
http://www.sqi.gu.edu.au/sc7-mirror/private_files/07n2598.zip
ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf

BIBLIOGRAPHY 185

[44] J. Voas, G. McGraw, and A. Ghosh. Gluing together software components:

How good is your glue? InProceedings of Pacific Northwest Software Qual-

ity Conference, Oct 1996.http://www.cigital.com/papers/download/

pnsqc96.pdf (Accessed April 2002).4.7.5

[45] J. Voas and K. Miller. Improving the software development process using

testability research, 1992.http://www.cigital.com/papers/download/

issre92.pdf (Accessed April 2002).4.7.5

[46] J. Voas and K. Miller. Software testability: The new verification.IEEE

Software, May 1995. http://www.cigital.com/papers/download/

ieeesoftware95.pdf (Accessed April 2002).4.7.5

[47] J. Voas and J. Payne. Cots software failures: can anything be

done? In Proceedings of the First IEEE Workshop on Application

Specific Software Engineering and Technology (ASSET 98), Dallas, Mar

1998. http://www.cigital.com/papers/download/ASSET98.ps (Ac-

cessed April 2002).4.7.5

[48] Jeffrey Voas. Mitigating the potential for damage caused by cots and

third-party software failures. InProceedings of AQUIS 98, Venice, Apr

1988. http://www.cigital.com/papers/download/ven.ps (Accessed

April, 2002). 4.7.5

[49] Jeffrey Voas. Testing software for characteristics other than correctness:

Safety, failure tolerance, and security, 1996.http://www.cigital.com/

papers/download/ictcs96.pdf (Accessed April, 2002).4.7.5

[50] Jeffrey Voas. Tolerant software interfaces: Can cots-based systems be

trusted without them? InProceedings of the 15th International Confer-

ence on Computer Safety, Reliability, and Security (SAFECOMP 96), Vienna,

Oct 1996. http://www.cigital.com/papers/download/safecomp96.

pdf (Accessed April, 2002).4.7.5

http://www.cigital.com/papers/download/pnsqc96.pdf
http://www.cigital.com/papers/download/pnsqc96.pdf
http://www.cigital.com/papers/download/issre92.pdf
http://www.cigital.com/papers/download/issre92.pdf
http://www.cigital.com/papers/download/ieeesoftware95.pdf
http://www.cigital.com/papers/download/ieeesoftware95.pdf
http://www.cigital.com/papers/download/ASSET98.ps
http://www.cigital.com/papers/download/ven.ps
http://www.cigital.com/papers/download/ictcs96.pdf
http://www.cigital.com/papers/download/ictcs96.pdf
http://www.cigital.com/papers/download/safecomp96.pdf
http://www.cigital.com/papers/download/safecomp96.pdf

BIBLIOGRAPHY 186

[51] Jeffrey Voas. Using assertions to make untestable software more testable.

Software Quality Professional, 1997. http://www.cigital.com/papers/

download/ESEC97.ps (Accessed April, 2002).4.7.5

[52] Jeffrey Voas. Cots: The economical choice?IEEE Software (Manager Col-

umn), Mar 1998. http://www.cigital.com/papers/download/ieee_

softwaremanager.ps (Accessed April, 2002).4.7.5

[53] Jeffrey Voas. Defensive approaches to testing systems that contain cots

and third-party functionality. InProceedings of 15th International Confer-

ence and Exposition on Testing Computer System, Jun 1998.http://www.

cigital.com/papers/download/ictcs98.ps (Accessed April, 2002).

4.7.5

[54] Jeffrey Voas. Upgrading software maintenance for components.IEEE

Software, Jul 1998. http://www.cigital.com/papers/download/

maintain.ps (Accessed April, 2002).4.7.5

[55] Jeffrey Voas. Software malleability: Were losing it! InProceedings of the

2nd Annual Systems Engineering and Supportability Conference, Septem-

ber 1999, San Diego, CA. 1999.http://www.cigital.com/papers/

download/ndia99.pdf (Accessed April, 2002).4.7.5

[56] Jeffrey Voas. This decades eight greatest myths about software quality.IEEE

Software, Jul 1999. http://www.cigital.com/papers/download/qt4.

ps (Accessed April, 2002).4.1.2, 1, 4.7.5

[57] Jeffrey Voas. Third-party usage profiling: A model for optimizing the mass-

marketed software industry.IEEE Software, 2000. http://www.cigital.

com/papers/download/product-line.pdf (Accessed April, 2002).4.7.5

[58] W. Weck, J. Bosch, and C. Szyperski. InProceedings of the Third Interna-

tional Workshop on Component Oriented Programming (WCOP’98), num-

http://www.cigital.com/papers/download/ESEC97.ps
http://www.cigital.com/papers/download/ESEC97.ps
http://www.cigital.com/papers/download/ieee_softwaremanager.ps
http://www.cigital.com/papers/download/ieee_softwaremanager.ps
http://www.cigital.com/papers/download/ictcs98.ps
http://www.cigital.com/papers/download/ictcs98.ps
http://www.cigital.com/papers/download/maintain.ps
http://www.cigital.com/papers/download/maintain.ps
http://www.cigital.com/papers/download/ndia99.pdf
http://www.cigital.com/papers/download/ndia99.pdf
http://www.cigital.com/papers/download/qt4.ps
http://www.cigital.com/papers/download/qt4.ps
http://www.cigital.com/papers/download/product-line.pdf
http://www.cigital.com/papers/download/product-line.pdf

BIBLIOGRAPHY 187

ber 10 in General Publications. Turku Center for Computer Science, TUCS,

Sep 1998.7

[59] Karl Wiegers. Karl wiegers describes 10 requirements traps to avoid.

Software Development, 4(5), May 1996. http://processimpact.com/

articles/reqtraps.pdf Accessed June 2002.2.1

[60] Karl Wiegers.Software Requirements. Microsoft Press, Redmon, Washing-

ton, first edition, 1999.4.2.3

http://processimpact.com/articles/reqtraps.pdf
http://processimpact.com/articles/reqtraps.pdf

Appendix A

Behavior Tree Architecture

Description

The purpose of this appendix is to show the current form and notation of Behavior

TreeTM specifications from [20, Dromey (2002)].

A Behavior Tree “is a formal tree-like graphical notation that represents the

behaviour exhibited by individual or sets of entities, that realise or change states,

make decisions, respond to or cause events, and interact by exchanging information

and/or passing control.” [20, Dromey (2002)].

As introduced in Section4.6.1, Behavior Trees will be used for the representa-

tion of the software architecture of a software component or system. Its advantages

include:

• It allows a clear, consistent and complete methodology for implementing a

set of software requirements as a software architecture.

• Transformation, by augmentation and pruning, of the architecture can be

easily achieved with changing requirements, or the application of quality

attributes.

• A standard XML Schema form of the EBNF version of Behavior Trees can

be directly created, providing a way for developers to use third-party tools

188

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 189

to automatically examine a software architecture. Future development will

include tools for compiling and running Behavior Trees, independent of im-

plementation.

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 190

A.1 Behavior Tree Notation - Graphical Form

This graphical version of the elements that make up Behavior Trees is referenced

from the specification document [20, Dromey (2002)]. This should be used as a

guide to understanding the Behavior Tree notation used in the later examples.

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 191

Tag C
[s] Component C realizes state s then passes control to its output1.1(a)

Tag C
? b ?

 If component C is in state b it passes control to its output. This
 notation is used to model decisions/conditions. If b does not
 hold flow of control through this component-state is blocked

1.1(c)

Tag C
? NOT : b ?

 If component C is in state " NOT : b" i t passes control to
 i ts output. This notation is used to model decisions/conditions.
 Only one condition from a set emanating from a node is true.

1.1(d)

Behavior Tree Notation - Graphic Form Page-01

Tag C
?? b ??

 When and if component C realizes state " b" i t passes control to
 i ts output. This notation is used to model events. Only one out
 of a set of alternative events can ever be true at one time.

1.1(e)

Tag C
< s >

 Component C outputs the state, data or attribute value "s"
to the component(s) connected to its output.1.1(f)

Tag C
> s <

 Component C inputs the state, data or attribute value "s"
 from the component connected to its input then passes control
 to the component connected to its output..

1.1(g)

Tag C
[a := exp]

 Component C realizes the state that its attribute "a" is assigned
 the value of the expression, property or state "exp". It then
 passes control to the component connected to its output.

1.1(h)

Tag C
?? < s > ??

 When and if component C generates an output event
 the component outputs the state, data or attribute value "s"

to the component(s) connected to its output.

1.2(a)

State
Realization

Decision

Negation

Event

Output

Input

Attribute
Assignment

Output
Event

Tag C
?? > s < ??

 When and if component C receives an input event
 the component transfers control to the component(s)
 connected to its output.

1.2(b) Input
Event

Tag C
 <> s <>

 When and if component C receives an input "s" the
 component transfers "s" to the component(s) connected to
 i ts output.

1.2(c) Input/
Output

Tag C
 ? ELSE ?

 If al l other conditions associated with component-states
 emanating from a given node of control are false then
 control is passed through the "ELSE" branch to its children.

1.2(d) Default
Condition

Tag C
 ? ERROR ?

 If al l other conditions associated with component-states
 emanating from a given node of control are false then
 control is passed through the "ERROR" branch to its children.

1.2(e) Error
Condition

Tag C
 [s1 | s2 | ...| sn]

 A component C can have associated with it one or more
 non-overlapping set of states that are used to define its
 behavior. Only one state in a set exists at any one time.

1.3(a) State-set
Definition

Tag C
[s]

 System Component C realizes the system state s then passes
control to its output. System State

Realization
1.1(b)

Tag C
 { s }

 Component C in state s is a projected component state. The
 bracketing indicates that a parent or higher component in the
 projection environment involved a decision or event.

1.3(b) Choice
Projection

Figure A.1: Graphical Behavior Tree Notation - Part 1

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 192

Tag C' :: C"
 [s]

 The relationship between component C' and component C"
 has realized the state s2(a). Relation

State

Tag C
 [C'[s']]

 Component C has realized the state that C' is in state s' and
 component C' has realized state s'3(a). Composite

State

Tag C
 [[s'] C']

Component C has realized the state that the state s' has
 been realized by component C' . the component C' has
 in turn realised the state s'

3(b). Composite
State

Tag C' : C"
 [s]

 Component C' which is also known as C" or C' which is of
 type C" has realised state s2(b). Alias

State

Tag C
 []

Component C is in an uninitial ized state or all members of
 a sequence or set associated with C have been processed or
 component C has had its states erased or is a new component.

6.1(a). Uninitialized
State

Behavior Tree Notation - Graphic Form Page-02

Tag C
[b ; [...]*]

 The [...] refers to an implied collection (l ist, sequence or set)
 that assumes the type of the accompanying element that is
 associated. Here "b" is prepended to a sequence of b's in C

1.4(d). Sequence
Prepend

Tag C
[b ? [...]*]

 This says pass control to the component(s) connected to C's
 output i f "b" is in the collection of b's.1.5(a). Collection

Search

Tag C
[b ×××× [...]*]

 This says delete b from the collection of b's contained
 within C then pass control to C's output.1.5(b). Delete

Element

Tag C
[[...]* ; b]

 The [...] refers to an implied collection (l ist, sequence or set)
 that assumes the type of the accompanying element that is
 associated. Here "b" is appended to a sequence of b's in C

1.4(e). Sequence
Append

Tag C
 [××××]

 Dynamic component C is removed from the current context.
6.1(b). Remove

Component

Tag C
[b , [...]*]

 The [...] refers to an implied set that assumes the type of
 the accompanying element that is associated. Here "b"
 is added to a set of b's in C

1.4(c). Set-
Add element

Tag C
< b> ; [...]*

This says remove b from the front of the l ist of b's contained
 within C and output it. An element can also be output from
 them end of a l ist. The [...] refers to a l ist of implied b's.

1.4(a). List-output
Delete element

Tag C
[> b< ; [...]*]

 This says input b and add it to the front of the l ist of b's
 contained within C. An element can also be input and
 added to the end of the l ist.

1.4(b). List-input
Add element

Tag C
 [s / q]

 Component C is in state s qualified or restricted to those with the
 property q. It is also possible for C to be directly qualified8.1(a). Remove

Component

Tag C \\ e
 [s]

 The set of components of type C, excluding e, are in the
 state s. Exclusion is a form of qualif ication.8.1(b). Exclusion

Figure A.2: Graphical Behavior Tree Notation - Part 2

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 193

Tag C
 [s]*

 Component C contains a l ist, sequence or set of zero or more
 elements of type s.9.1(a). Zero or More

State

Behavior Tree Notation - Graphic Form Page-03

Tag C
 [s]+

 Component C contains a l ist, sequence or set of one or more
 elements of type s.9.1(b). One or More

State

Tag C%
 [s]

 A percentage of (some) components of type C are in state s. Percentage-of
State

Tag C?
 [s]

 An arbitrary or random component of type C among a set of
 components of type C is in state s. Random

Component

Tag C^
 [s]

 When this component-state is reached control is
 transferred back to component C in state s higher up in tree.

Control
transfer

Tag C=
 [s]

 When a component C realizes an equivalent state s the
behavior that fol lows wil l be defined at only one of the
equivalent states identified by the "=".

Equivalent
State

Tag C ||
 ?? s ??

 The "||" signals the start of a independent thread of control for
 the current component-state and its sub-tree.

Independent
Thread

Tag
+

C
 [s]

 The " + " in the tag field indicates that the behavior
 corresponding to C in state s is not explicitly stated in the
 original requirement but is implied by the requirement.

Implied
Behavior

Tag
-

C
 [s]

 The " - " in the tag field indicates that the behavior
 corresponding to C in state s is missing from the
 original requirement and it needed for completeness.

Missing
Behavior

Tag C@
 [s]

 Externally defined behavior for a component C in state s
 is included. It may refer to an encapsulated behavior tree.

External
Behavior

Tag C&
 [s]

 The "&" used for a set of component-states connected to a
 successor indicates control is only passed to the successor
 when all "&" input component-states are satisfied.

All Inputs
Available

Tag C#NAT

[s]
 There are the number NAT components C in state s. Component

Count

9.1(c).

9.1(d).

9.1(e).

9.1(f).

9.1(g).

9.1(h).

9.1(i).

9.1(j).

9.4(a).

9.4(b).

Figure A.3: Graphical Behavior Tree Notation - Part 3

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 194
Behavior Tree Notation - Graphic Form Page-04

Tag C
 [s]

Tag D
 [s']

 Component C on realizing state s sequential ly passes
 control to component D which then realizes state s'.

Sequential
Flow10.

Tag C
 [s]

Tag D
 [s'] Tag E

 [s"]

 Component C on realizing state s concurrently passes
 control to component and component E.

Concurrent
Flow11.

Tag C
 [s]

Tag D
 ? b ? Tag E

 ? b' ?

 On receiving control from C, D wil l pass control to its output
 i f b is true otherwise E wil l pass control to its output if b' is true.
 ?ERROR? and ?ELSE? can be default choices for selection.

Selected
Flow12.

Tag C
 [s]

Tag D
 ?? b ?? Tag E

 ?? b' ??

 On receiving control from C, D wil l pass control to its output
 when event b occurs, otherwise E wil l pass control to its output
 i f event b' occurs. As soon as one event emanating from a node
 occurs all other possible events emanating from that node are
 extinguished.

Selected
Event13(a).

Tag C
 [s]

Tag D ||
 ?? b ?? Tag E ||

 ?? b' ??

 The difference of this form (with the "||") from selected events
 is that if, for example D passed control through its output, i t
 would NOT extinguish the possibil i ty that E could
 subsequently pass control through its output if event b' occurred
 This allows the specification of independent threads of control.

Threaded
Control flow13(b).

Tag C
 [s]

Tag D
 [s']

 The "double-arrow" is used to indicate that no other behavior
 can intervene between the connected component-states. Tight

Control flow14.

Tag C
 ? b ?

Tag D
 ? b' ?

 The "double-l ine" is used to indicate the conjunction (AND)
 of a pair of conditions. Here control is only passed to D's
 output if both b and b' are true..

Conjunctive
Composition15.

C
 < s >*

C ^
? < > ?

16.
Iteration

Top & Bottom

Iteration
Top

Iteration
Bottom

Iteration falls through when
output is exhausted

Figure A.4: Graphical Behavior Tree Notation - Part 4

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 195

A.2 Behavior Tree Notation - Textual Form

This section shows the current specification for Behavior Trees in Extended Backus-

Naur Form (EBNF). BNF grammar rules were first used in the description of the

Algol60 language. EBNF allows for repetition and optional operations within BNF.

EBNF allows the rules for how a Behavior Tree can be structured to be explic-

itly expressed in a standard form. However it is not easy for people to read, and is

difficult to implement within a language, especially if modifications are required.

SectionA.3 will use this structure to create a software-friendly version using the

new standard XML Schema specification form.

1. Behavior Tree Tree ::= Node(C,s) | Node(C,s) ; (Tree, Tree, ,
Tree) | Empty Nodes and Component-States Node(C,s) ::= C{s} |
C{s}//Tag | [C{s}] | [C{s}//Tag]

2. C{s} ::= C OP[s]OP1 | C?b? | C?NOT:b? | C??b?? | C<s>OP1 | C>s<
OP1 | C[a:=exp]OP1

3. C{s} ::= C??<s>??OP1 | C??>s<??OP1 | C<>s<>OP1 | C?ELSE? |
C?ERROR?

4. C{s}::= C[{[s | s | | s]}+] | C{s}

5. C{s} ::= C<s>;[]OP1 | C[s;[]OP1] | C[[]OP1;s] | C[s,[]OP1]

6. C{s} ::= C[s?[s]OP1] | C[s[s]OP1]

7. C ::= C::C | C:C

8. s ::= State | C[s] | [s]C | | Empty

9. b ::= s | Boolean_Exp

10. Boolean_Exp ::= exp

11. exp ::= Relational_Exp | Identifier | function | Qualifier |
[] | [????]

12. Relational_Exp ::= Simple_Exp Relational_Operator Simple_Exp

13. a , State, s, C, C, C ::= Identifier |
Identifier / Qualifier | Identifier \\ Qualifier

14. State ::= Identifier.{ Digit } + | Qualifier

15. Qualifier ::= Identifier { Identifier }* | Boolean_Exp |
NAT | Empty

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 196

16. OP ::= * | + | % | @ | & | # NAT | ? | ˆ | = | || | Empty

17. OP1 ::= * | + | % | # NAT | ? | Empty

18. Tag ::= Number Status | Identifier Status | Status | Empty

19. Status ::= + | - | Empty

20. Alpha ::= A | B | | Z | a | b | | z

21. Digit ::= 0 | 1 | | 9

22. Identifier ::= Identifier & Identifier |
Identifier | Identifier

23. Identifier ::= Alpha { Alpha | Digit | _ Alpha | -Alpha |
_Digit | -Digit } *

24. NAT ::= { Digit } +

25. Number ::= NAT { . NAT }*

26. Empty ::=

27. C[a := State] =C[State]

28. C[a := Qualifier] =C[Qualifier]

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 197

A.3 XML Schema Specification for Behavior Trees

This XML file conforming to the XML Schema model defined at:

http://www.w3.org/2001/XMLSchema-instance

is a direct translation of the EBNF form of Behavior Trees specified in Sec-

tion A.2.

The XML Schema file can be considered as the grammar, or database structure

for defining how a Behavior Tree can be composed from its various elements. For

any given Behavior Tree to be considered valid, it must conform to these rules,

provided in the form of an XML Schema file.

The advantage of using XML Schema, is that it is an emerging, implementation-

independent standard for describing complex structures. Unlike the previous Data-

Type-Description (DTD) files used with XML, explicit specification of numeric,

and string types can be made; limiting them to ranges or certain patterns.

An actual Behavior Tree (see the example in SectionA.4) can then merely

specify the data values required, and refer to this unchanging Schema file for the

structure it is conforming to.

This Schema file is directly aligned to the proper specification of Behavior

Trees and is used by various other research projects at this time, namely a Behavior

Tree simulator, and diagramming tool that both read and write Behavior Trees as

XML files. As such this Schema will be undergo revisions, to remove errors and

conform to current best practice.

<?xml version="1.0"?> <xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="tree">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="node" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:element ref="semicolon" />
<xs:element minOccurs="1" maxOccurs="unbounded" ref="tree" />

</xs:sequence>
</xs:sequence>
<xs:element ref="empty" />

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 198

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="node">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="cs" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:element ref="double_forward_slash" />
<xs:element ref="tag" />

</xs:sequence>
</xs:sequence>
<xs:sequence>

<xs:element ref="left_brace" />
<xs:element ref="cs" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:element ref="double_forward_slash" />
<xs:element ref="tag" />

</xs:sequence>
<xs:element ref="right_brace" />

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name="cs">
<xs:complexType>

<xs:sequence>
<xs:element ref="c" />
<xs:choice>

<xs:sequence>
<xs:element ref="op" />
<xs:element ref="left_brace" />
<xs:element ref="s" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />

</xs:sequence>
<xs:sequence>

<xs:element ref="double_query" />
<xs:choice>

<xs:sequence>
<xs:element ref="b" />
<xs:element ref="double_query" />

</xs:sequence>
<xs:sequence>

<xs:element ref="smaller_than" />
<xs:element ref="s" />
<xs:element ref="greater_than" />
<xs:element ref="double_query" />
<xs:element ref="op1" />

</xs:sequence>
<xs:sequence>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 199

<xs:element ref="greater_than" />
<xs:element ref="s" />
<xs:element ref="smaller_than" />
<xs:element ref="double_query" />
<xs:element ref="op1" />

</xs:sequence>
</xs:choice>

</xs:sequence>
<xs:sequence>

<xs:element ref="query" />
<xs:choice>

<xs:sequence>
<xs:element ref="not" />
<xs:element ref="colon" />
<xs:element ref="b" />

</xs:sequence>
<xs:element ref="else" />
<xs:element ref="error" />
<xs:element ref="b" />

</xs:choice>
<xs:element ref="query" />

</xs:sequence>
<xs:sequence>

<xs:element ref="smaller_than" />
<xs:choice>

<xs:sequence>
<xs:element ref="greater_than" />
<xs:element ref="s" />
<xs:element ref="smaller_than" />
<xs:element ref="greater_than" />
<xs:element ref="op1" />

</xs:sequence>
<xs:sequence>

<xs:element ref="s" />
<xs:element ref="greater_than" />
<xs:choice>

<xs:sequence>
<xs:element ref="semicolon" />
<xs:element ref="left_brace" />
<xs:element ref="sequence" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />

</xs:sequence>
<xs:element ref="op1" />

</xs:choice>
</xs:sequence>

</xs:choice>
</xs:sequence>
<xs:sequence>

<xs:element ref="greater_than" />
<xs:element ref="s" />
<xs:element ref="smaller_than" />
<xs:element ref="op1" />

</xs:sequence>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 200

<xs:sequence>
<xs:element ref="left_curly" />
<xs:element ref="s" />
<xs:element ref="right_curly" />

</xs:sequence>
<xs:sequence>

<xs:element ref="left_brace" />
<xs:choice>

<xs:sequence>
<xs:element ref="a" />
<xs:element ref="assign" />
<xs:element ref="exp" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />

</xs:sequence>
<xs:sequence>

<xs:element ref="left_brace" />
<xs:choice>

<xs:sequence>
<xs:element ref="sequence" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />
<xs:element ref="semicolon" />
<xs:element ref="s" />

</xs:sequence>
<xs:sequence>

<xs:element ref="s_" />
<xs:element ref="right_brace" />
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element ref="left_brace" />
<xs:element ref="s_" />
<xs:element ref="right_brace" />

</xs:sequence>
</xs:sequence>

</xs:choice>
<xs:element ref="right_brace" />

</xs:sequence>
<xs:sequence>

<xs:element ref="s" />
<xs:choice>

<xs:element ref="semicolon" />
<xs:element ref="comma" />

</xs:choice>
<xs:element ref="left_brace" />
<xs:element ref="sequence" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />
<xs:element ref="right_brace" />

</xs:sequence>
<xs:sequence>

<xs:element ref="s_" />
<xs:choice>

<xs:element ref="query" />
<xs:element ref="cross" />

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 201

</xs:choice>
<xs:element ref="left_brace" />
<xs:element ref="s" />
<xs:element ref="right_brace" />
<xs:element ref="op1" />
<xs:element ref="right_brace" />

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="s">
<xs:complexType>

<xs:choice>
<xs:element ref="state" />
<xs:sequence>

<xs:element ref="c_" />
<xs:element ref="left_brace" />
<xs:element ref="s_" />
<xs:element ref="right_brace" />

</xs:sequence>
<xs:sequence>

<xs:element ref="left_brace" />
<xs:element ref="s_" />
<xs:element ref="right_brace" />
<xs:element ref="c_" />

</xs:sequence>
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="b">
<xs:complexType>

<xs:choice>
<xs:element ref="s" />
<xs:element ref="boolean_exp" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="boolean_exp">
<xs:complexType>

<xs:sequence>
<xs:element ref="exp" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="exp">
<xs:complexType>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 202

<xs:choice>
<xs:element ref="relational_exp" />
<xs:element ref="identifier" />
<xs:element ref="function" />
<xs:element ref="qualifier" />
<xs:sequence>

<xs:element ref="left_brace" />
<xs:choice>

<xs:element ref="right_brace" />
<xs:sequence>

<xs:element ref="cross" />
<xs:element ref="right_brace" />

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name="relational_exp">
<xs:complexType>

<xs:sequence>
<xs:element ref="simple_exp" />
<xs:element ref="relational_operator" />
<xs:element ref="simple_exp" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="a">
<xs:complexType>

<xs:sequence>
<xs:element ref="identifier" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:choice>
<xs:element ref="forward_slash" />
<xs:element ref="double_backslash" />

</xs:choice>
<xs:element ref="qualifier" />

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="state">
<xs:complexType>

<xs:choice>
<xs:element ref="qualifier" />
<xs:sequence>

<xs:element ref="identifier" />
<xs:choice>

<xs:sequence>
<xs:element ref="forward_slash" />
<xs:element ref="qualifier" />

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 203

</xs:sequence>
<xs:sequence>

<xs:element ref="double_backslash" />
<xs:element ref="qualifier" />

</xs:sequence>
<xs:sequence>

<xs:element ref="dot" />
<xs:element minOccurs="1" maxOccurs="unbounded" ref="digit" />

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name="c">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="c_" />
<xs:choice>

<xs:element ref="double_colon" />
<xs:element ref="colon" />

</xs:choice>
<xs:element ref="c__" />

</xs:sequence>
<xs:sequence>

<xs:element ref="identifier" />
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element ref="forward_slash" />
<xs:element ref="double_backslash" />

</xs:choice>
<xs:element ref="qualifier" />

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name="s_">
<xs:complexType>

<xs:sequence>
<xs:element ref="identifier" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:choice>
<xs:element ref="forward_slash" />
<xs:element ref="double_backslash" />

</xs:choice>
<xs:element ref="qualifier" />

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="c_">

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 204

<xs:complexType>
<xs:sequence>

<xs:element ref="identifier" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:choice>
<xs:element ref="forward_slash" />
<xs:element ref="double_backslash" />

</xs:choice>
<xs:element ref="qualifier" />

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="c__">
<xs:complexType>

<xs:sequence>
<xs:element ref="identifier" />
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:choice>
<xs:element ref="forward_slash" />
<xs:element ref="double_backslash" />

</xs:choice>
<xs:element ref="qualifier" />

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="qualifier">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="identifier" />
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element ref="space" />
<xs:element ref="identifier" />

</xs:sequence>
</xs:sequence>
<xs:element ref="boolean_exp" />
<xs:sequence>

<xs:element ref="hash" />
<xs:element ref="nat" />

</xs:sequence>
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="op">
<xs:complexType>

<xs:choice>
<xs:element ref="asterisk" />
<xs:element ref="plus" />

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 205

<xs:element ref="percent" />
<xs:element ref="at" />
<xs:element ref="ampersand" />
<xs:sequence>

<xs:element ref="hash" />
<xs:element ref="nat" />

</xs:sequence>
<xs:element ref="query" />
<xs:element ref="hat" />
<xs:element ref="equals" />
<xs:element ref="or" />
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="op1">
<xs:complexType>

<xs:choice>
<xs:element ref="asterisk" />
<xs:element ref="plus" />
<xs:element ref="percent" />
<xs:sequence>

<xs:element ref="hash" />
<xs:element ref="nat" />

</xs:sequence>
<xs:element ref="query" />
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="tag">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="number" />
<xs:element ref="status" />
<xs:element ref="descriptor" />

</xs:sequence>
<xs:sequence>

<xs:element ref="identifier" />
<xs:element ref="status" />
<xs:element ref="descriptor" />

</xs:sequence>
<xs:sequence>

<xs:element ref="status" />
<xs:element ref="descriptor" />

</xs:sequence>
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 206

<xs:element name="status">
<xs:complexType>

<xs:choice>
<xs:element ref="plus" />
<xs:element ref="dash" />
<xs:element ref="empty" />

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="alpha">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z]{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

<xs:element name="digit">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

<xs:element name="identifier">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element ref="identifier" />
<xs:choice>

<xs:element ref="ampersand" />
<xs:element ref="bar" />

</xs:choice>
<xs:element ref="identifier" />

</xs:sequence>
<xs:sequence>

<xs:element ref="alpha" />
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="alpha" />
<xs:element ref="digit" />
<xs:sequence>

<xs:element ref="underline" />
<xs:element ref="alpha" />

</xs:sequence>
<xs:sequence>

<xs:element ref="dash" />
<xs:element ref="alpha" />

</xs:sequence>
<xs:sequence>

<xs:element ref="underline" />
<xs:element ref="digit" />

</xs:sequence>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 207

<xs:sequence>
<xs:element ref="dash" />
<xs:element ref="digit" />

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name="nat">
<xs:complexType>

<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="digit" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="number">
<xs:complexType>

<xs:sequence>
<xs:element ref="nat" />
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element ref="dot" />
<xs:element ref="nat" />

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="empty">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="\s{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

<xs:element name="descriptor" type="xs:string" />
<xs:element name="relation" type="xs:string" />
<xs:element name="arithmetic_exp" type="xs:string" />
<xs:element name="simple_exp" type="xs:string" />
<xs:element name="relational_operator" type="xs:string" />
<xs:element name="function" type="xs:string" />

<xs:element name="left_brace">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="\[{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="right_brace">

<xs:simpleType>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 208

<xs:restriction base="xs:string">
<xs:pattern value="\]{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="left_curly">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\{{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="right_curly">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\}{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="query">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\?{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="double_query">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\?{2}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="hash">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="#{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="else">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="(else){1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="error">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="(error){1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 209

<xs:element name="smaller_than">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="<{1}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="greater_than">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=">{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="not">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="(NOT){1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="assign">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="(:=){1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="forward_slash">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="/{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="double_backslash">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\\{2}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="double_forward_slash">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="/{2}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="qualify">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=":{2}"/>
</xs:restriction>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 210

</xs:simpleType>
</xs:element>
<xs:element name="underline">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="_{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="dash">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="-{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="asterisk">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="*{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="plus">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="\+{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="percent">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="%{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="bar">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="|{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="or">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="|{2}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="hat">

<xs:simpleType>
<xs:restriction base="xs:string">

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 211

<xs:pattern value="ˆ{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="equals">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="={1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="at">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="@{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="ampersand">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="&{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="colon">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=":{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="double_colon">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=":{2}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="semicolon">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=";{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="dot">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=".{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="cross">

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 212

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="X{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="sequence">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=".{3}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="comma">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=",{1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="space">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value=" {1}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:schema>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 213

A.4 Example XML Behavior Tree

Software components are generally considered as “black-boxes” for the purposes

of its functionality, and only its interface specifications are known. Behavior Trees

provide a way analysing the functionality of a component without needing to see

the actual source or binary implementation code. So by using the XML version

of Behavior Trees, there is the potential for third-party software to automatically

analyse the internal behaviour and quality attributes of any conforming component.

This XML file represents a very simple Behavior Tree with only one compo-

nent. It’s prime purpose is to demonstrate how to create a Behavior Tree in XML

that conforms to the XML Schema specification for Behavior Trees given in Sec-

tion A.3.

<?xml version="1.0"?> <tree
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="file:behaviour_tree.xsd">

<node>
<cs>

<c>
<identifier>

<alpha>D</alpha>
<alpha>O</alpha>
<alpha>O</alpha>
<alpha>R</alpha>

</identifier>
</c>
<op><hat>ˆ</hat></op>
<left_brace>[</left_brace>
<s>

<state>
<qualifier>

<identifier>
<alpha>o</alpha>
<alpha>p</alpha>
<alpha>e</alpha>
<alpha>n</alpha>
<alpha>e</alpha>
<alpha>d</alpha>

</identifier>
</qualifier>

</state>
</s>
<right_brace>]</right_brace>
<op1><asterisk>*</asterisk></op1>

</cs>

APPENDIX A. BEHAVIOR TREE ARCHITECTURE DESCRIPTION 214

</node>
</tree>

Appendix B

Quality Attribute Specification

An example of an attribute specification format table from Section4.2.1follows:

Maintainability:

scale = minutes to do simplest repair to software using templates

date (initial delivery to customers) = January next year

test (unit) = at least ten consecutive repair attempts to be done within worst

case level for each module

test (system) = at least 50 random, representative system level bugs to be

inserted and then repaired within planned level requirement

worst (by initial release date) = 10 minutes

plan (by initial release date) = 5 minutes

plan (by 3 years after initial release date, for online modules only) = 2

record (lab experiment TR23.3 1989) = 10 seconds average

now (old system, last year average) = 30 minutes

see (marketing strategy, Part 2.3.12) = input to this requirement

source (marketing requirement) = MRS Jan 28th 198x, JCP

215

APPENDIX B. QUALITY ATTRIBUTE SPECIFICATION 216

This table will be encoded using the XML Schema specification in SectionB.1.

The primary purpose of this section is to demonstrate a standard way of format-

ting the textual data of requirements specifications. This XML data can then be

included with the XML Behavior Tree specification and the binary code of the

component, to provide detailed data for testing and certification of the component.

B.1 XML Schema for Quality Attribute Specification

This XML file conforms to the XML Schema model defined at:

http://www.w3.org/2001/XMLSchema-instance

<?xml version="1.0"?> <xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="requirements">
<xs:complexType>

<xs:sequence>
<xs:element ref="functional" />
<xs:element ref="nonfunctional" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="functional">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="number" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="nonfunctional">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="number" />
<xs:element ref="name" />
<xs:element ref="scale" />
<xs:element ref="date" />
<xs:element ref="test" />
<xs:element ref="worst" />
<xs:element ref="plan" />
<xs:element ref="record" />
<xs:element ref="now" />
<xs:element ref="see" />
<xs:element ref="source" />

</xs:sequence>

APPENDIX B. QUALITY ATTRIBUTE SPECIFICATION 217

</xs:complexType>
</xs:element>

<xs:element name="name">
<xs:simpleType>

<xs:element ref="description" />
</xs:simpleType>

</xs:element>

<xs:element name="scale">
<xs:simpleType>

<xs:element ref="description" />
</xs:simpleType>

</xs:element>

<xs:element name="date">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="test">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="worst">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="plan">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="record">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

APPENDIX B. QUALITY ATTRIBUTE SPECIFICATION 218

<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="now">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="see">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="source">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="type" />
<xs:element ref="description" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="number">
<xs:simpleType>

<xs:element ref="description" />
</xs:simpleType>

</xs:element>

<xs:element name="type">
<xs:simpleType>

<xs:element ref="description" />
</xs:simpleType>

</xs:element>

<xs:element name="description">
<xs:complexType>

<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:restriction base="xs:string">

<xs:pattern value="[a-zA-Z0-9 ,.]{1}"/>
</xs:restriction>

</xs:sequence>
</xs:complexType>

</xs:element>

APPENDIX B. QUALITY ATTRIBUTE SPECIFICATION 219

</xs:schema>

B.2 Example XML Quality Attribute Specification

This XML file represents a very simple quality attribute specification for only one

attribute. It’s prime purpose is to demonstrate how to create an overall require-

ments specification using XML that conforms to the Schema specification given in

SectionB.1.

<?xml version="1.0"?> <requirements
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="file:requirements.xsd">

<functional>
</functional>
<nonfunctional>

<number>
<description>QR01</description>

</number>
<name>

<description>Maintainability</description>
</name>
<scale>

<description>minutes to do simplest repair to
software using templates</description>

</scale>
<date>

<type>
<description>initial delivery to customers</description>

</type>
<description>January next year</description>

</date>
<test>

<type>
<description>unit</description>

</type>
<description>at least ten consecutive repair attempts to be
done within worst case level for each module</description>
<type>

<description>system</description>
</type>
<description>at least 50 random, representative system level
bugs to be inserted and then repaired within planned level
requirement</description>

</test>
<worst>

<type>
<description>by initial release date</description>

</type>

APPENDIX B. QUALITY ATTRIBUTE SPECIFICATION 220

<description>10 minutes</description>
</worst>
<plan>

<type>
<description>by initial release date</description>

</type>
<description>5 minutes</description>
<type>

<description>by 3 years after initial release date, for
online modules only</description>

</type>
<description>2 minutes</description>

</plan>
<record>

<type>
<description>lab experiment TR23.3 1989</description>

</type>
<description>10 seconds average</description>

</record>
<now>

<type>
<description>old system, last year average</description>

</type>
<description>30 minutes</description>

</now>
<see>

<type>
<description>marketing strategy, Part 2.3.12</description>

</type>
<description>input to this requirement</description>

</see>
<source>

<type>
<description>marketing requirement</description>

</type>
<description>MRS Jan 28th 198x, JCP</description>

</source>
</nonfunctional>

</requirements>

Appendix C

Component Implementation

Example using Java

This section shows an initial implementation of the Concurrent Stack, Queue, and

Set Components as a generic Collection. It is primarily a prototype, to assist work

design work produced in this dissertation. It uses the requirements and architecture

descriptions developed from Sections5.3.1, 5.3.2, 5.3.3, and5.3.5

Sun’s Java Software Development Kit version 1.4.0 was used for the imple-

mentation language. It offers development within an Object-Oriented paradigm,

operating system portability, and full support for parallel threads and mutual exclu-

sion. Ideally JavaBeans or Enterprise JavaBeans should have been used for their

component development capabilities, but due to complexities and time limitations

of this dissertation, they where considered out of scope. This should be avenue for

future research, however.

The StackTest object is an example of how to use the concurrent stack system.

This object was primarily used to test the behaviour and implementation of the

system, as well as verify the requirements and architecture design.

Stack Object

/*
* Stack 1.0 01/10/2002

221

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA222

*
* Copyright (c)2001 Tony Gillan. All rights reserved.
*/

import java.io.*;
import java.util.*;

/**
* class Stack represents the basic resource addition and removal
* processes used to simulate a stack.
*
* @version 1.0 1 October 2002
* @author (c)2002 Tony Gillan. tony@gridloq.com
*/

public class Stack implements Serializable {
private static final int MAX_SIZE = 10;

private LinkedList resources;
private int resourcesTotal;

public Stack() {
this.resources = new LinkedList();
this.resourcesTotal = 0;

}

public synchronized boolean addResource(Object resource) {
boolean result = false;
if (resource!=null && resources!=null && !isFull()) {

resources.addLast(resource);
resourcesTotal++;
result = true;
System.out.println("stack: resource added, " +

resourcesTotal + " total.");
} else {

System.out.println("stack: resource couldnt be added, " +
resourcesTotal + " total.");

}
return result;

}

public synchronized Object removeResource() {
Object result = null;
if (resources!=null && !isEmpty()) {

result = resources.removeFirst();
resourcesTotal--;
System.out.println("stack: resource removed, " +

resourcesTotal + " left.");
} else {

System.out.println("stack: resource couldnt be removed, " +
resourcesTotal + " total.");

}
return result;

}

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA223

public synchronized boolean isFull() {
return resourcesTotal>=MAX_SIZE;

}

public synchronized boolean isEmpty() {
return resourcesTotal==0;

}

public synchronized void reset() {
resources = new LinkedList();
resourcesTotal = 0;

}
}

ConcurrentStack Object

/*
* ConcurrentStack 1.0 01/10/2002
*
* Copyright (c)2001 Tony Gillan. All rights reserved.
*/

import java.io.*;
import java.util.*;

/**
* class ConcurrentStack represents a stack that can have concurrent additions
* and removals made by external Consumer and Producer objects. Additionally
* an Operator can initialise and shutdown the stack.
*
* @version 1.0 1 October 2002
* @author (c)2002 Tony Gillan. tony@gridloq.com
*/

public class ConcurrentStack extends Stack implements Runnable {
private volatile Thread thread;
private boolean running;

private boolean available;
private boolean availableForAddition;
private boolean availableForRemoval;
private boolean requestedClose;

private Object resourceToAdd;
private Object resourceRetrieved;
private boolean requestResource;

public ConcurrentStack() {
super();
this.thread = null;
this.running = false;
this.available = false;
this.availableForAddition = false;
this.availableForRemoval = false;

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA224

this.requestedClose = true;
this.resourceToAdd = null;
this.resourceRetrieved = null;
this.requestResource = false;
start();

}

public void start() {
if (thread==null) {

thread = new Thread(this);
running = true;
thread.start();

}
}

public void stop() {
running = false;
thread = null;

}

public void run() {
Thread thisThread = Thread.currentThread();
while (thread==thisThread && running) {

try {
thisThread.sleep((int)(Math.random() * 100));

} catch (InterruptedException e){
}
if (available) {

if (requestedClose) {
if (availableForAddition) {

availableForAddition = false;
}
if (isEmpty()) {

if (availableForRemoval) {
availableForRemoval = false;
available = false;

}
}

}
if (requestResource && resourceRetrieved==null) {

resourceRetrieved = removeResource();
}
if (resourceToAdd!=null) {

addResource(resourceToAdd);
resourceToAdd = null;

}
}

}
}

public synchronized boolean add(Object resource) {
boolean result = false;
if (availableForAddition && resourceToAdd==null) {

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA225

resourceToAdd = resource;
result = true;

}
return result;

}

public synchronized Object retrieve() {
Object result = null;
if (availableForRemoval) {

requestResource = true;
if (resourceRetrieved!=null) {

requestResource = false;
result = resourceRetrieved;
resourceRetrieved = null;

}
}
return result;

}

public synchronized void requestClose() {
requestedClose = true;

}

public synchronized void requestInit() {
if (!available) {

super.reset();
resourceToAdd = null;
resourceRetrieved = null;
requestedClose = false;
requestResource = false;
availableForRemoval = true;
availableForAddition = true;
available = true;

}
}

}

Producer Object

/*
* Producer 1.0 01/10/2002
*
* Copyright (c)2001 Tony Gillan. All rights reserved.
*/

import java.io.*;
import java.util.*;

/**
* class Producer represents a producer of resources to be placed on the
* ConcurrentStack object.
*
* @version 1.0 1 October 2002

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA226

* @author (c)2002 Tony Gillan. tony@gridloq.com
*/

public class Producer implements Runnable {
private volatile Thread thread;
private boolean running;

private ConcurrentStack stack;
private static int resourceID = 0;

public Producer(ConcurrentStack stack) {
this.stack = stack;
start();

}

public void start() {
if (thread==null) {

thread = new Thread(this);
running = true;
thread.start();

}
}

public void stop() {
running = false;
thread = null;

}

public void run() {
Thread thisThread = Thread.currentThread();
String resource = "" + (resourceID++);
while (thread==thisThread && running) {

try {
thisThread.sleep((int)(Math.random() * 100));

} catch (InterruptedException e){
}
if (stack.add(resource)) {

System.out.println("producer: added resource: " + resource);
resource = "" + (resourceID++);

} else {
System.out.println("producer: couldnt add resource: " + resource);

}
}

}
}

Consumer Object

/*
* Consumer 1.0 01/10/2002
*
* Copyright (c)2001 Tony Gillan. All rights reserved.
*/

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA227

import java.io.*;
import java.util.*;

/**
* class Consumer represents a consumer of resources provided by the
* ConcurrentStack object.
*
* @version 1.0 1 October 2002
* @author (c)2002 Tony Gillan. tony@gridloq.com
*/

public class Consumer implements Runnable {
private volatile Thread thread;
private boolean running;

private ConcurrentStack stack;
private static int resourceID = 0;

public Consumer(ConcurrentStack stack) {
this.stack = stack;
start();

}

public void start() {
if (thread==null) {

thread = new Thread(this);
running = true;
thread.start();

}
}

public void stop() {
running = false;
thread = null;

}

public void run() {
Thread thisThread = Thread.currentThread();
Object resource = null;
while (thread==thisThread && running) {

try {
thisThread.sleep((int)(Math.random() * 100));

} catch (InterruptedException e){
}
resource = stack.retrieve();
if (resource!=null && resource instanceof String) {

System.out.println("consumer: retrieved resource: " + ((String)resource));
} else {

System.out.println("consumer: couldnt retrieve resource");
}

}
}

}

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA228

StackTest Object

/*
* StackTest 1.0 01/10/2002
*
* Copyright (c)2001 Tony Gillan. All rights reserved.
*/

import java.io.*; import java.util.*;

/**
* class StackTest represents a simple test method for the ConcurrentStack
* object and its dependent concurrent Producer and Consumers objects.
*
* @version 1.0 1 October 2002
* @author (c)2002 Tony Gillan. tony@gridloq.com
*/

public class StackTest {
public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
ConcurrentStack stack = new ConcurrentStack();
Consumer consumer = new Consumer(stack);
Producer producer = new Producer(stack);
boolean running = false;
String command = in.readLine();
while (true) {

if (running) {
System.out.println("operator has requested system close.");
stack.requestClose();
running = false;

} else {
System.out.println("operator has requested system initialise.");
stack.requestInit();
running = true;

}
command = in.readLine();

}
}

}

Trace Log of StackTest Execution

producer: couldnt add resource: 0
producer: couldnt add resource: 0
producer: couldnt add resource: 0
consumer: couldnt retrieve resource
producer: couldnt add resource: 0
consumer: couldnt retrieve resource
producer: couldnt add resource: 0
consumer: couldnt retrieve resource
producer: couldnt add resource: 0

operator has requested system initialise.
consumer: couldnt retrieve resource

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA229

stack: resource couldnt be removed, 0 total.
producer: added resource: 0
consumer: couldnt retrieve resource
stack: resource couldnt be removed, 0 total.
stack: resource added, 1 total.
producer: added resource: 1
stack: resource removed, 0 left.
stack: resource added, 1 total.
producer: added resource: 2
consumer: retrieved resource: 0
stack: resource added, 2 total.
consumer: couldnt retrieve resource
producer: added resource: 3
producer: couldnt add resource: 4
stack: resource removed, 1 left.
stack: resource added, 2 total.
consumer: retrieved resource: 1
producer: added resource: 4
stack: resource added, 3 total.
consumer: couldnt retrieve resource
producer: added resource: 5
stack: resource removed, 2 left.
stack: resource added, 3 total.
consumer: retrieved resource: 2
producer: added resource: 6
producer: couldnt add resource: 7
stack: resource added, 4 total.
consumer: couldnt retrieve resource
stack: resource removed, 3 left.
consumer: retrieved resource: 3
consumer: couldnt retrieve resource
consumer: couldnt retrieve resource
producer: added resource: 7
producer: couldnt add resource: 8
stack: resource removed, 2 left.
stack: resource added, 3 total.
consumer: retrieved resource: 4
consumer: couldnt retrieve resource
stack: resource removed, 2 left.
producer: added resource: 8
producer: couldnt add resource: 9
consumer: retrieved resource: 5
stack: resource added, 3 total.
producer: added resource: 9
stack: resource added, 4 total.
producer: added resource: 10
consumer: couldnt retrieve resource
producer: couldnt add resource: 11
stack: resource removed, 3 left.
consumer: retrieved resource: 6
stack: resource added, 4 total.
consumer: couldnt retrieve resource
producer: added resource: 11
stack: resource removed, 3 left.

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA230

stack: resource added, 4 total.
consumer: retrieved resource: 7
producer: added resource: 12
producer: couldnt add resource: 13
stack: resource added, 5 total.

operator has requested system close.
consumer: couldnt retrieve resource
producer: added resource: 13
consumer: couldnt retrieve resource
producer: couldnt add resource: 14
stack: resource removed, 4 left.
stack: resource added, 5 total.
producer: couldnt add resource: 14
consumer: retrieved resource: 8
consumer: couldnt retrieve resource
consumer: couldnt retrieve resource
producer: couldnt add resource: 14
stack: resource removed, 4 left.
consumer: retrieved resource: 9
producer: couldnt add resource: 14
consumer: couldnt retrieve resource
consumer: couldnt retrieve resource
consumer: couldnt retrieve resource
stack: resource removed, 3 left.
consumer: retrieved resource: 10
producer: couldnt add resource: 14
consumer: couldnt retrieve resource
stack: resource removed, 2 left.
consumer: retrieved resource: 11
producer: couldnt add resource: 14
producer: couldnt add resource: 14
consumer: couldnt retrieve resource
producer: couldnt add resource: 14
stack: resource removed, 1 left.
consumer: retrieved resource: 12
producer: couldnt add resource: 14
consumer: couldnt retrieve resource
stack: resource removed, 0 left.
consumer: retrieved resource: 13
producer: couldnt add resource: 14
consumer: couldnt retrieve resource
producer: couldnt add resource: 14
producer: couldnt add resource: 14

operator has requested system initialise.
consumer: couldnt retrieve resource
stack: resource couldnt be removed, 0 total.
stack: resource couldnt be removed, 0 total.
consumer: couldnt retrieve resource
producer: added resource: 14
consumer: couldnt retrieve resource
stack: resource couldnt be removed, 0 total.
stack: resource added, 1 total.

APPENDIX C. COMPONENT IMPLEMENTATION EXAMPLE USING JAVA231

consumer: couldnt retrieve resource
stack: resource removed, 0 left.
producer: added resource: 15
producer: couldnt add resource: 16
consumer: retrieved resource: 14
stack: resource added, 1 total.
consumer: couldnt retrieve resource
consumer: couldnt retrieve resource
producer: added resource: 16
stack: resource removed, 0 left.
stack: resource added, 1 total.
consumer: retrieved resource: 15
producer: added resource: 17
consumer: couldnt retrieve resource
producer: couldnt add resource: 18
stack: resource removed, 0 left.
stack: resource added, 1 total.
consumer: retrieved resource: 16
producer: added resource: 18
stack: resource added, 2 total.
producer: added resource: 19
producer: couldnt add resource: 20
consumer: couldnt retrieve resource
stack: resource removed, 1 left.
stack: resource added, 2 total.
consumer: retrieved resource: 17
consumer: couldnt retrieve resource
producer: added resource: 20
stack: resource removed, 1 left.
stack: resource added, 2 total.
consumer: retrieved resource: 18
consumer: couldnt retrieve resource
producer: added resource: 21
stack: resource removed, 1 left.
stack: resource added, 2 total.

operator has requested system close.

	0.1 Statement of Originality
	0.2 Acknowledgements
	1 Introduction
	2 Topic Introduction
	2.1 Software Requirements
	2.2 Software Architecture

	3 Problem Statement
	3.1 The Problem
	3.2 Justification
	3.3 Discussion

	4 The State of the Art
	4.1 Software Requirements
	4.1.1 Functional and Nonfunctional Requirements
	4.1.2 Software Quality
	4.1.3 A Model for Software Product Quality

	4.2 Software Quality Attributes
	4.2.1 Software Engineering Templates
	4.2.2 Quality Attributes
	4.2.3 Software Quality Attributes
	4.2.4 Understanding Quality Attributes
	4.2.5 Software Product Quality Requirements and Evaluation
	4.2.6 Defining and Specifying Quality Attributes
	4.2.7 Quality Attributes and Software Architecture

	4.3 Software Engineering Measurement
	4.4 Software Process Quality
	4.5 Software Component Architecture
	4.5.1 Models of Evolving Software
	4.5.2 Component-Based Systems
	4.5.3 Architecture and Legacy Systems
	4.5.4 Achieving an Architecture
	4.5.5 Architectural Means for Achieving Qualities
	4.5.6 Types of Application Integration
	4.5.7 Design and Use of Software Architectures

	4.6 Architecture Description
	4.6.1 Genetic Software Engineering
	4.6.2 Model Driven Architecture

	4.7 Component Certification and Selection
	4.7.1 Standards and Product Certification
	4.7.2 COTS Myths
	4.7.3 COTS Requirements
	4.7.4 Quality Attribute Evaluation
	4.7.5 COTS Assessment
	4.7.6 Component Evaluation

	5 Problem Solution
	5.1 Quality Attributes Model
	5.1.1 The Software Development Process
	5.1.2 Software Requirements Categorisation
	5.1.3 Quality Attribute Specification

	5.2 Component Development
	5.3 Component Development Example
	5.3.1 Stack
	5.3.2 Queue
	5.3.3 Set
	5.3.4 Set with Concurrency
	5.3.5 Collection

	5.4 Component Adaptation Example
	5.4.1 Hospital Bed Allocation System
	5.4.2 Carpark Space Allocation System
	5.4.3 Translation Results
	5.4.4 Component Adaptation
	5.4.5 Quality Identification

	6 Conclusions
	6.1 Conclusions
	6.2 Summary of Contributions
	6.3 Future Research

	7 Glossary of Terms
	8 Acronyms
	A Behavior Tree Architecture Description
	A.1 Behavior Tree Notation - Graphical Form
	A.2 Behavior Tree Notation - Textual Form
	A.3 XML Schema Specification for Behavior Trees
	A.4 Example XML Behavior Tree

	B Quality Attribute Specification
	B.1 XML Schema for Quality Attribute Specification
	B.2 Example XML Quality Attribute Specification

	C Component Implementation Example using Java

